Descripteur
Termes descripteurs IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance spectrale
réflectance spectrale |



Etendre la recherche sur niveau(x) vers le bas
Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands / Bappa Das in Geocarto international, vol 35 n° 13 ([01/10/2020])
![]()
[article]
Titre : Comparative analysis of index and chemometric techniques-based assessment of leaf area index (LAI) in wheat through field spectroradiometer, Landsat-8, Sentinel-2 and Hyperion bands Type de document : Article/Communication Auteurs : Bappa Das, Auteur ; Rabi N. Sahoo, Auteur ; Sourabh Pargal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1415 - 1432 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] blé (céréale)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] spectroradiomètreRésumé : (auteur) Successful retrieval of leaf area index (LAI) from hyperspectral remote sensing relies on the proper selection of indices or multivariate models. The objectives of the research work were to identify best vegetation index and multivariate model based on canopy reflectance and LAI measured at different growth stages of wheat. Comparison of existing indices revealed optimized soil-adjusted vegetation index (OSAVI) as the best index based on R2 of calibration, validation and root mean square error of validation. Proposed ratio index (RI; R670, R845) and normalized difference index (NDI; R670, R845) provided comparable performance with the existing vegetation indices (R2 = 0.65 and 0.62 for RI and NDI, respectively, during validation). Among the multivariate models, partial least squares regression (PLSR) model with Hyperion band configuration performed the best during validation (R2 = 0.80 and RMSE = 0.58 m2 m−2). Our results manifested the opportunities for developing biophysical products based on satellite sensors. Numéro de notice : A2020-607 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581271 date de publication en ligne : 28/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581271 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95967
in Geocarto international > vol 35 n° 13 [01/10/2020] . - pp 1415 - 1432[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2020101 SL Revue Centre de documentation Revues en salle Disponible A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements / Bikram Koirala in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
![]()
[article]
Titre : A machine learning framework for estimating leaf biochemical parameters from its spectral reflectance and transmission measurements Type de document : Article/Communication Auteurs : Bikram Koirala, Auteur ; Zohreh Zahiri, Auteur ; Paul Scheunders, Auteur Année de publication : 2020 Article en page(s) : pp 7393 - 7405 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] biochimie
[Termes descripteurs IGN] diagnostic foliaire
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] teneur en chlorophylle des feuillesRésumé : (auteur) Spectral measurements are commonly applied for the nondestructive estimation of leaf parameters, such as the concentrations of chlorophyll a and b, carotenoid, anthocyanin, brown pigment, leaf water content, and leaf mass per area for the quantification of vegetation physiology. The most popular way to estimate these parameters is by using spectral vegetation indices. The use of biochemical models allows us to use the full wavelength range (400–2500 nm) and to physically interpret the result. However, their performance is usually lower than that of supervised machine learning regression techniques. Machine learning regression techniques, on the other hand, have the disadvantage that the relationship between estimated parameters and the reflectance/transmission spectra is unclear. In this article, a hybrid between a supervised learning method and physical modeling for the estimation of leaf parameters is proposed. In this method, a machine learning regression technique is applied to learn a mapping from the true hyperspectral data set to a data set that follows the PROSPECT model. The PROSPECT model then reveals the actual leaf parameters. Two mapping methods, based on Gaussian processes (GPs) and kernel ridge regression (KRR) are proposed. As an alternative, mapping onto the leaf absorption spectra is proposed as well. The proposed methodology not only estimates the leaf parameters with a lower error but also solves the interpretation problem of the parameters estimated by the advanced machine learning regression techniques. This method is validated on the ANGERS and LOPEX data set. Numéro de notice : A2020-589 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2982263 date de publication en ligne : 02/04/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2982263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95919
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 10 (October 2020) . - pp 7393 - 7405[article]Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed / Qinghu Jiang in Remote sensing, vol 12 n° 18 (September 2020)
![]()
[article]
Titre : Use of visible and near-infrared reflectance spectroscopy models to determine soil erodibility factor (K) in an ecologically restored watershed Type de document : Article/Communication Auteurs : Qinghu Jiang, Auteur ; Yiyun Chen, Auteur ; Jialiang Hu, Auteur ; Feng Liu, Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image visible
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] sol arable
[Termes descripteurs IGN] spectroscopie
[Termes descripteurs IGN] surface cultivée
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study aimed to assess the ability of using visible and near-infrared reflectance (Vis–NIR) spectroscopy to quantify soil erodibility factor (K) rapidly in an ecologically restored watershed. To achieve this goal, we explored the performance and transferability of the developed spectral models in multiple land-use types: woodland, shrubland, terrace, and slope farmland (the first two types are natural land and the latter two are cultivated land). Subsequently, we developed an improved approach by combining spectral data with related topographic variables (i.e., elevation, watershed location, slope height, and normalized height) to estimate K. The results indicate that the calibrated spectral model using total samples could estimate K factor effectively (R2CV = 0.71, RMSECV = 0.0030 Mg h Mj−1 mm−1, and RPDCV = 1.84). When predicting K in the new samples, models performed well in natural land soils (R2P = 0.74, RPDP = 1.93) but failed in cultivated land soils (R2P = 0.24, RPDP = 0.99). Furthermore, the developed models showed low transferability between the natural and cultivated land datasets. The results also indicate that the combination of spectral data with topographic variables could slightly increase the accuracies of K estimation in total and natural land datasets but did not work for cultivated land samples. This study demonstrated that the Vis–NIR spectroscopy could be used as an effective method in predicting K. However, the predictability and transferability of the calibrated models were land-use type dependent. Our study also revealed that the coupling of spectrum and environmental variable is an effective improvement of K estimation in natural landscape region Numéro de notice : A2020-631 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12183103 date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/rs12183103 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96052
in Remote sensing > vol 12 n° 18 (September 2020) . - 16 p.[article]Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing / Jonathan B. Thayn in Marine geodesy, Vol 43 n° 5 (September 2020)
![]()
[article]
Titre : Monitoring narrow mangrove stands in Baja California Sur, Mexico using linear spectral unmixing Type de document : Article/Communication Auteurs : Jonathan B. Thayn, Auteur Année de publication : 2020 Article en page(s) : pp 493 - 508 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse linéaire des mélanges spectraux
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] mangrove
[Termes descripteurs IGN] Mexique
[Termes descripteurs IGN] réflectance spectraleRésumé : (auteur) Small stands of mangrove trees are difficult to detect and monitor using satellite remote sensing because the width of the narrow strips of vegetation are typically much smaller than the spatial resolution of the imagery. Every mangrove pixel also contains water and bare soil reflectance. Linear spectral unmixing, which estimates the fractional presence of specific land cover types per pixel, was performed on Landsat 8 imagery to detect mangroves on the eastern shoreline of the Bay of La Paz on the Baja California Peninsula of Mexico. Low-altitude aerial imagery collected from a DJI Mavic Pro drone was used as ground-reference data in the accuracy assessment. Continuous fractional presence of mangroves was detected with 80% accuracy and 85% of mangrove area was found. Future work will use linear spectral unmixing to systematically monitor mangrove extent and health in the region relative to expected growth in tourism development. Numéro de notice : A2020-483 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/01490419.2020.1751753 date de publication en ligne : 30/04/2020 En ligne : https://doi.org/10.1080/01490419.2020.1751753 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95636
in Marine geodesy > Vol 43 n° 5 (September 2020) . - pp 493 - 508[article]Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? / Mohammad Shawkat Hossain in Geocarto international, vol 35 n° 11 ([01/08/2020])
![]()
[article]
Titre : Can ensemble techniques improve coral reef habitat classification accuracy using multispectral data? Type de document : Article/Communication Auteurs : Mohammad Shawkat Hossain, Auteur ; Aidy M. Muslim, Auteur ; Muhammad Izuan Nadzri, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 214 - 1232 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] carte bathymétrique
[Termes descripteurs IGN] Chine, mer de
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification hypercube
[Termes descripteurs IGN] classification par maximum de vraisemblance
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] fond marin
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] Malaisie
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] récif corallien
[Termes descripteurs IGN] réflectance spectraleRésumé : (auteur) Remote sensing has potential in studies of the benthic habitat and extracting the reflectance from the data of multispectral sensors, but traditional image classification techniques cannot provide coral habitat maps with adequate accuracy. This study tested five traditional and three ensemble classification techniques on QuickBird for mapping the benthic composition of coral reefs on the Lang Tengah Island (Malaysia). The common techniques, minimum distance, maximum likelihood, K-nearest neighbour, Fisher and parallelepiped techniques were compared with ensemble classifiers, such as majority voting (MV), simple averaging, and mode combination. The per-class accuracy of the habitat detection improved in the ensemble classifiers; in particular, the MV classifier achieved 95%, 65%, 75% and 95% accuracies for coral, sparse coral, coral rubble and sand, respectively. Ensembles increased the accuracy of the habitat mapping classification by 28%, relative to conventional techniques. Thus, the ensemble techniques can be preferred over the traditional for benthic habitat mapping. Numéro de notice : A2020-459 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1557263 date de publication en ligne : 12/02/2019 En ligne : https://doi.org/10.1080/10106049.2018.1557263 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95566
in Geocarto international > vol 35 n° 11 [01/08/2020] . - pp 214 - 1232[article]Cross-calibration of MODIS reflective solar bands with Sentinel 2A/2B MSI instruments / Amit Angal in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkUsing spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation / Kirsten J. Lees in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
PermalinkAqueous alteration mapping in Rishabdev ultramafic complex using imaging spectroscopy / Hrishikesh Kumar in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
PermalinkFootprint determination of a spectroradiometer mounted on an unmanned aircraft system / Deepak Gautam in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
PermalinkAn original method for tree species classification using multitemporal multispectral and hyperspectral satellite data / Olga Grigorieva in Silva fennica, vol 54 n° 2 (March 2020)
PermalinkPotential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
PermalinkLandsats 1–5 multispectral scanner system sensors radiometric calibration update / Cibele Teixeira-Pinto in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
PermalinkUnmanned aerial vehicles (UAVs) for monitoring macroalgal biodiversity: comparison of RGB and multispectral imaging sensors for biodiversity assessments / Leigh Tait in Remote sensing, vol 11 n° 19 (October 2019)
PermalinkUnmanned aerial system multispectral mapping for low and variable solar irradiance conditions: Potential of tensor decomposition / Sheng Wang in ISPRS Journal of photogrammetry and remote sensing, vol 155 (September 2019)
PermalinkHyperspectral analysis of soil polluted with four types of hydrocarbons / Laura A. Reséndez-Hernández in Geocarto international, vol 34 n° 9 ([15/06/2019])
Permalink