Descripteur
Termes IGN > sciences naturelles > physique > optique > optique physique > radiométrie > signature spectrale > réflectance > réflectance spectrale
réflectance spectrale |
Documents disponibles dans cette catégorie (115)



Etendre la recherche sur niveau(x) vers le bas
Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
![]()
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Bathymetry and benthic habitat mapping in shallow waters from Sentinel-2A imagery: A case study in Xisha islands, China / Wei Huang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 12 (December 2022)
![]()
[article]
Titre : Bathymetry and benthic habitat mapping in shallow waters from Sentinel-2A imagery: A case study in Xisha islands, China Type de document : Article/Communication Auteurs : Wei Huang, Auteur ; Jun Zhao, Auteur ; Bin Ai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 4212412 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bathymétrie
[Termes IGN] carte thématique
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] fond marin
[Termes IGN] habitat d'espèce
[Termes IGN] image hyperspectrale
[Termes IGN] image Sentinel-MSI
[Termes IGN] profondeur
[Termes IGN] réflectance spectraleRésumé : (auteur) Mapping of benthic habitats and bathymetry is crucial for sustainable development and assessment of climate change and human activities. In this study, Hyperspectral Optimization Process Exemplar (HOPE) was modified, renamed as M-HOPE, to simultaneously obtain bathymetry and benthic habitat in shallow waters in Xisha Island, China. A local lookup table (LUT) for benthic reflectance spectra was established. Validation using in situ measurements demonstrated good performance of M-HOPE with a R2 of 0.76 for bathymetry using the local LUT. Application of M-HOPE to Sentinel-2A imagery further proved good accuracy of M-HOPE derived bathymetry with a R2 of 0.86 against in situ observations and a R2 of 0.92 against ICESat-2 measurements. M-HOPE-derived benthic classification also agreed well with field observations with probability of detection (POD) >0.6 and false alarm ratio (FAR) Numéro de notice : A2022-907 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3229029 Date de publication en ligne : 14/12/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3229029 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102338
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 12 (December 2022) . - n° 4212412[article]Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data / Yanan Zhou in Remote sensing, vol 14 n° 21 (November-1 2022)
![]()
[article]
Titre : Exploring the influencing factors in identifying soil texture classes using multitemporal Landsat-8 and Sentinel-2 data Type de document : Article/Communication Auteurs : Yanan Zhou, Auteur ; Wei Wu, Auteur ; Hongbin Liu, Auteur Année de publication : 2022 Article en page(s) : n° 5571 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] composition des sols
[Termes IGN] données multitemporelles
[Termes IGN] Extreme Gradient Machine
[Termes IGN] Fleuve bleu (Chine)
[Termes IGN] image Landsat-8
[Termes IGN] image Sentinel-MSI
[Termes IGN] limon
[Termes IGN] qualité du sol
[Termes IGN] réflectance spectrale
[Termes IGN] texture du solRésumé : (auteur) Soil texture is a key soil property driving physical, chemical, biological, and hydrological processes in soils. The rapid development of remote sensing techniques shows great potential for mapping soil properties. This study highlights the effectiveness of multitemporal remote sensing data in identifying soil textural class by using retrieved vegetation properties as proxies of soil properties. The impacts of sensors, modeling resolutions, and modeling techniques on the accuracy of soil texture classification were explored. Multitemporal Landsat-8 and Sentinel-2 images were individually acquired at the same time periods. Three satellite-based experiments with different inputs, i.e., Landsat-8 data, Sentinel-2 data (excluding red-edge parameters), and Sentinel-2 data (including red-edge parameters) were conducted. Modeling was carried out at three spatial resolutions (10, 30, 60 m) using five machine-learning (ML) methods: random forest, support vector machine, gradient-boosting decision tree, categorical boosting, and super learner that combined the four former classifiers based on the stacking concept. In addition, a novel SHapley Addictive Explanation (SHAP) technique was introduced to explain the outputs of the ML model. The results showed that the sensors, modeling resolutions, and modeling techniques significantly affected the prediction accuracy. The models using Sentinel-2 data with red-edge parameters performed consistently best. The models usually gave better results at fine (10 m) and medium (30 m) modeling resolutions than at a coarse (60 m) resolution. The super learner provided higher accuracies than other modeling techniques and gave the highest values of overall accuracy (0.8429), kappa (0.7611), precision (0.8378), recall rate (0.8393), and F1-score (0.8398) at 30 m with Sentinel-2 data involving red-edge parameters. The SHAP technique quantified the contribution of each variable for different soil textural classes, revealing the critical roles of red-edge parameters in separating loamy soils. This study provides comprehensive insights into the effective modeling of soil properties on various scales using multitemporal optical images. Numéro de notice : A2022-856 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14215571 Date de publication en ligne : 04/11/2022 En ligne : https://doi.org/10.3390/rs14215571 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102104
in Remote sensing > vol 14 n° 21 (November-1 2022) . - n° 5571[article]The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation / Shuaijun Liu in Remote sensing of environment, vol 279 (September-15 2022)
![]()
[article]
Titre : The FIRST model: Spatiotemporal fusion incorrporting spectral autocorrelation Type de document : Article/Communication Auteurs : Shuaijun Liu, Auteur ; Junxiong Zhou, Auteur ; Yuean Qiu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 113111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] autocorrélation
[Termes IGN] bande spectrale
[Termes IGN] détection de changement
[Termes IGN] données spatiotemporelles
[Termes IGN] fusion de données
[Termes IGN] image Landsat-OLI
[Termes IGN] image Terra-MODIS
[Termes IGN] réflectance de surface
[Termes IGN] réflectance spectrale
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression multipleRésumé : (auteur) Over the past decade, spatiotemporal fusion has become an indispensable tool for monitoring land surface dynamics due to its promising ability to produce surface reflectance products with both high spatial and temporal resolutions. However, existing fusion methods usually generate multispectral band products by predicting each spectral band separately, so the useful information of spectral autocorrelation within the spectrum has been ignored and waits to be exploited. To address this issue, we propose a novel spatiotemporal fusion method, the spatiotemporal Fusion Incorrporting Spectral autocorrelaTion (FIRST) model, to fully utilize the multiple spectral bands of surface reflectance products. Compared with other fusion methods, the model has three distinct advantages: (1) it utilizes spectral autocorrelation in a many-to-many regression framework that simultaneously inputs and predicts multispectral bands without the collinearity effect; (2) it maintains high fusion accuracy when the spatiotemporal variation is large with acceptable computational efficiency; and (3) it can produce robust results even with input images contaminated by haze and thin clouds. We tested the FIRST model at several experimental sites and compared it with four typical methods, the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM), Flexible Spatiotemporal DAta Fusion (FSDAF) model, the regression model Fitting, spatial Filtering and residual Compensation (Fit-FC) model and the enhanced STARFM (ESTARFM). The results demonstrate that FIRST yields better overall performance for its simple and effective technical principles. FIRST is thus expected to provide high-quality remotely sensed data with high spatial resolution and frequent observations for various applications. Numéro de notice : A2022-554 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.rse.2022.113111 Date de publication en ligne : 16/06/2022 En ligne : https://doi.org/10.1016/j.rse.2022.113111 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101166
in Remote sensing of environment > vol 279 (September-15 2022) . - n° 113111[article]Forest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)
![]()
[article]
Titre : Forest tree species classification based on Sentinel-2 images and auxiliary data Type de document : Article/Communication Auteurs : Haotian You, Auteur ; Yuanwei Huang, Auteur ; Zhigang Qin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dioxyde d'azote
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] température de l'air
[Termes IGN] texture du sol
[Termes IGN] topographie localeRésumé : (auteur) Most research on forest tree species classification based on optical image data uses information such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is room for improvement in the classification of tree species in large areas based on optical images. The combined application of multispectral images and other auxiliary data can provide a new method for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract spectral reflectance, spectral index, texture, and phenological information. Data for topography, precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were included as auxiliary data. Models for forest tree species classification were constructed through feature combination and feature optimization using the random forest (RF), gradient tree boost (GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The classification results of 16 feature combinations with the 4 classification methods were compared, and the contributions of different features to the classification models of forest tree species were evaluated. Finally, the optimal classification model was selected to identify the spatial distribution of forest tree species in the study area. The model based on feature optimization gave the best results among the 16 feature combination models. The overall accuracy and kappa coefficient were increased by 18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20, respectively, compared with the spectral and spectral index classification model. By analyzing the feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological information ranked as the top three features in terms of importance. Although the importance of spectral reflectance and spectral index features was lower, the number of feature variables accounted for a large proportion of the total. The importance of commonly used texture features was limited, and these features were not present in the feature optimization model. The RF algorithm had the highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80, among the four classification algorithms. The results of GTB were close to those of RF, and the difference in overall classification accuracy was only 0.14%. However, the results of the SVM and CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can be concluded that the combined application of Sentinel-2 images and auxiliary data can improve forest tree species classification accuracy. The model based on feature optimization achieved the highest classification accuracy among the 16 feature combination models. The spectral reflectance and spectral index data extracted from optical images are useful for tree species classification, but the effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet aerosol index, phenological features, NO2 concentration features, topographic diversity features, precipitation features, temperature features, and multi-scale topographic location index data, can effectively improve forest tree species classification accuracy. The RF algorithm had the highest accuracy, and it can be used for tree species classification space distribution identification. The combined application of Sentinel-2 images and auxiliary data can improve classification accuracy, but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus, more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR can be combined with multispectral images to improve forest tree species classification accuracy in future research. Numéro de notice : A2022-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091416 Date de publication en ligne : 02/09/2022 En ligne : https://doi.org/10.3390/f13091416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101757
in Forests > vol 13 n° 9 (september 2022) . - n° 1416[article]Variance based fusion of VCI and TCI for efficient classification of agriculture drought using MODIS data / Anjana N.J. Kukunuri in Geocarto international, vol 37 n° 10 ([01/06/2022])
PermalinkUnmixing-based spatiotemporal image fusion accounting for complex land cover changes / Xiaolu Jiang in IEEE Transactions on geoscience and remote sensing, vol 60 n° 5 (May 2022)
PermalinkA convolution neural network for forest leaf chlorophyll and carotenoid estimation using hyperspectral reflectance / Shuo Shi in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
PermalinkLand surface phenology retrieval through spectral and angular harmonization of Landsat-8, Sentinel-2 and Gaofen-1 data / Jun Lu in Remote sensing, vol 14 n° 5 (March-1 2022)
PermalinkMapping burn severity in the western Italian Alps through phenologically coherent reflectance composites derived from Sentinel-2 imagery / Donato Morresi in Remote sensing of environment, vol 269 (February 2022)
PermalinkCharacteristics of taiga and tundra snowpack in development and validation of remote sensing of snow / Henna-Reetta Hannula (2022)
PermalinkEarly detection of spruce vitality loss with hyperspectral data: Results of an experimental study in Bavaria, Germany / Kathrin Einzmann in Remote sensing of environment, vol 266 (December 2021)
PermalinkA novel cotton mapping index combining Sentinel-1 SAR and Sentinel-2 multispectral imagery / Lan Xun in ISPRS Journal of photogrammetry and remote sensing, Vol 181 (November 2021)
PermalinkEarly detection of pine wilt disease using deep learning algorithms and UAV-based multispectral imagery / Run Yu in Forest ecology and management, vol 497 (October-1 2021)
PermalinkSpectral reflectance estimation of UAS multispectral imagery using satellite cross-calibration method / Saket Gowravaram in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
Permalink