Descripteur
Termes descripteurs IGN > mathématiques > statistique mathématique > régression > régression linéaire
régression linéaireVoir aussi |



Etendre la recherche sur niveau(x) vers le bas
Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest / Seyedeh Kosar Hamidi in Annals of Forest Science [en ligne], vol 78 n° 1 (March 2021)
![]()
[article]
Titre : Analysis of plot-level volume increment models developed from machine learning methods applied to an uneven-aged mixed forest Type de document : Article/Communication Auteurs : Seyedeh Kosar Hamidi, Auteur ; Eric K. Zenner, Auteur ; Mahmoud Bayat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] dynamique de la végétation
[Termes descripteurs IGN] écosystème forestier
[Termes descripteurs IGN] forêt inéquienne
[Termes descripteurs IGN] Iran
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] peuplement mélangé
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Key message: We modeled 10-year net stand volume growth with four machine learning (ML) methods, i.e., artificial neural networks (ANN), support vector machines (SVM), random forests (RF), and nearest neighbor analysis (NN), and with linear regression analysis. Incorporating interactions of multiple variables, the ML methods ANN and SVM predicted nonlinear system behavior and unraveled complex relations with greater accuracy than regression analysis.
Context: Investigating the quantitative and qualitative characteristics of short-term forest dynamics is essential for testing whether the desired goals in forest-ecosystem conservation and restoration are achieved. Inventory data from the Jojadeh section of the Farim Forest located in the uneven-aged, mixed Hyrcanian Forest were used to model and predict 10-year net annual stand volume increment with new machine learning technologies.
Aims: The main objective of this study was to predict net annual stand volume increment as the preeminent factor of forest growth and yield models.
Methods: In the current study, volume increment was modeled from two consecutive inventories in 2003 and 2013 using four machine learning techniques that used physiographic data of the forest as input for model development: (i) artificial neural networks (ANN), (ii) support vector machines (SVM), (iii) random forests (RF), and (iv) nearest neighbor analysis (NN). Results from the various machine learning technologies were compared against results produced with regression analysis.
Results: ANNs and SVMs with a linear kernel function that incorporated field-measurements of terrain slope and aspect as input variables were able to predict plot-level volume increment with a greater accuracy (94%) than regression analysis (87%).
Conclusion: These results provide compelling evidence for the added utility of machine learning technologies for modeling plot-level volume increment in the context of forest dynamics and management.Numéro de notice : A2021-071 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s13595-020-01011-6 date de publication en ligne : 12/01/2021 En ligne : https://doi.org/10.1007/s13595-020-01011-6 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96794
in Annals of Forest Science [en ligne] > vol 78 n° 1 (March 2021) . - n° 4[article]Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs / Yang Bai in Computers & geosciences, vol 146 (January 2021)
![]()
[article]
Titre : Dynamic committee machine with fuzzy-c-means clustering for total organic carbon content prediction from wireline logs Type de document : Article/Communication Auteurs : Yang Bai, Auteur ; Maojin Tan, Auteur Année de publication : 2021 Article en page(s) : n° 104626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] puits de carbone
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] schisteRésumé : (auteur) The total organic carbon (TOC) content is of great significance to reflect the hydrocarbon-generation potential in shale reservoirs. The well logs were always used to predict the TOC content, but some linear regression methods do not match well with complex data. The neural network method can improve prediction accuracy, but it always generates unstable prediction models. A static committee machine can reduce errors and uncertainties by combining multiple learners, but the weight of integrating learners is difficult to determine. Therefore, a dynamic committee machine with fuzzy-c-means clustering (DCMF) was proposed to predict the TOC content. Experts in the DCMF include Elman neural network, extreme learning machine, and generalized regression neural network. The fuzzy-c-means clustering algorithm was used as the gate network to perform subtasks decomposition and weights calculation based on input data. The subtasks were used to train more adaptive TOC content prediction models, and the weights were transferred to the combiner to integrate all experts’ outputs into final results. The DCMF was applied in two wells located in the Jiumenchong formation in the Qiannan depression, China. The TOC prediction results using the DCMF method are more accurate than the linear regression method, three individual intelligent algorithms, and the static committee machine. The DCMF also provides a new method for weight calculation by mining potential information of input data. Numéro de notice : A2021-019 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2020.104626 date de publication en ligne : 17/10/2020 En ligne : https://doi.org/10.1016/j.cageo.2020.104626 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96512
in Computers & geosciences > vol 146 (January 2021) . - n° 104626[article]Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images / Haibin Gu in Remote sensing, vol 13 n° 1 (January 2021)
![]()
[article]
Titre : Retrieving surface soil water content using a soil texture adjusted vegetation index and unmanned aerial system images Type de document : Article/Communication Auteurs : Haibin Gu, Auteur ; Zhe Lin, Auteur ; Wenxuan Guo, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 145 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] Improved Vegetation Dryness Index
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] texture du solRésumé : (auteur) Surface soil water content (SWC) is a major determinant of crop production, and accurately retrieving SWC plays a crucial role in effective water management. Unmanned aerial systems (UAS) can acquire images with high temporal and spatial resolutions for SWC monitoring at the field scale. The objective of this study was to develop an algorithm to retrieve SWC by integrating soil texture into a vegetation index derived from UAS multispectral and thermal images. The normalized difference vegetation index (NDVI) and surface temperature (Ts) derived from the UAS multispectral and thermal images were employed to construct the temperature vegetation dryness index (TVDI) using the trapezoid model. Soil texture was incorporated into the trapezoid model based on the relationship between soil texture and the lower and upper limits of SWC to form the texture temperature vegetation dryness index (TTVDI). For validation, 128 surface soil samples, 84 in 2019 and 44 in 2020, were collected to determine soil texture and gravimetric SWC. Based on the linear regression models, the TTVDI had better performance in estimating SWC compared to the TVDI, with an increase in R2 (coefficient of determination) by 14.5% and 14.9%, and a decrease in RMSE (root mean square error) by 46.1% and 10.8%, for the 2019 and 2020 samples, respectively. The application of the TTVDI model based on high-resolution multispectral and thermal UAS images has the potential to accurately and timely retrieve SWC at the field scale. Numéro de notice : A2021-077 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010145 date de publication en ligne : 04/01/2021 En ligne : https://doi.org/10.3390/rs13010145 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96815
in Remote sensing > vol 13 n° 1 (January 2021) . - n° 145[article]Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) / Mirza Razi Imam Baig in Annals of GIS, vol 26 n° 4 (December 2020)
![]()
[article]
Titre : Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS) Type de document : Article/Communication Auteurs : Mirza Razi Imam Baig, Auteur ; Ishita Afreen Ahmad, Auteur ; Mohammad Tayyab, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 361 - 376 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Andhra Pradesh (Inde ; état)
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] érosion côtière
[Termes descripteurs IGN] géomorphologie locale
[Termes descripteurs IGN] image Landsat
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] surveillance du littoral
[Termes descripteurs IGN] trait de côteRésumé : (auteur) Coastline or Shoreline calculation is one of the important factors in the finding of coastal accretion and erosion and the study of coastal morphodynamic. Coastal erosion is a tentative hazard for communities especially in coastal areas as it is extremely susceptible to increasing coastal disasters. The study has been conducted along the coast of Vishakhapatnam district, Andhra Pradesh, India with the help of multi-temporal satellite images of 1991 2001, 2011 and 2018. The continuing coastal erosion and accretion rates have been calculated using the Digital Shoreline Analysis System (DSAS). Linear regression rate (LRR), End Point Rate (EPR) and Weighted Linear Regression (WLR) are used for calculating shoreline change rate. Based on calculations the district shoreline has been classified into five categories as high and low erosion, no change and high and low accretion. Out of 135 km, high erosion occupied 5.8 km of coast followed by moderate or low erosion 46.2 km. Almost 34.7 km coastal length showed little or no change. Moderate accretion is found along 30.5 km whereas high accretion trend found around 17.8 km. The outcome of shows that erosion is prevailing in Vishakhapatnam taluk, Ankapalli taluk, Yellamanchili taluk whereas most of the Bhemunipatnam coast is accreting. Natural and manmade activities and phenomena influence the coastal areas in terms of erosion and accretion. The study could be used for further planning and development and also for disaster management authority in the decision-making process in the study area. Numéro de notice : A2020-801 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1815839 date de publication en ligne : 09/10/2020 En ligne : https://doi.org/10.1080/19475683.2020.1815839 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96724
in Annals of GIS > vol 26 n° 4 (December 2020) . - pp 361 - 376[article]Optimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches / Mosbeh R. Kaloop in Survey review, vol 52 n° 375 (November 2020)
![]()
[article]
Titre : Optimizing local geoid undulation model using GPS/levelling measurements and heuristic regression approaches Type de document : Article/Communication Auteurs : Mosbeh R. Kaloop, Auteur ; Ahmed Zaki, Auteur ; Hamad Al-Ajami, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 544 - 554 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géodésie physique
[Termes descripteurs IGN] anomalie de pesanteur
[Termes descripteurs IGN] géoïde local
[Termes descripteurs IGN] Koweit
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] modèle de géopotentiel
[Termes descripteurs IGN] nivellement avec assistance GPS
[Termes descripteurs IGN] processus gaussien
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] régression multivariée par spline adaptativeRésumé : (auteur) This study investigates to use GPS/Levelling measurements of Kuwait and four heuristic regression methods including Least Square Support Vector Regression (LSSVR), Gaussian Process Regression (GPR), Kernel Ridge Regression (KRR), and Multivariate Adaptive Regression Splines (MARS) for modelling local geoid undulation. The accuracy of the models was compared by geoid undulation of gravitational observations and Global Geopotential Models (GGMs). The results show that the KRR model is suitable for Kuwait geoid model, its error of percentage is 0.018 and 0.124% relative to gravity and GPS/Levelling geoid undulation models, respectively. Furthermore, the comparison of KRR model with GGMs models signifies its accuracy. Numéro de notice : A2020-688 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2019.1665615 date de publication en ligne : 16/09/2019 En ligne : https://doi.org/10.1080/00396265.2019.1665615 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96221
in Survey review > vol 52 n° 375 (November 2020) . - pp 544 - 554[article]Semi-automatic building extraction from WorldView-2 imagery using taguchi optimization / Hasan Tonbul in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 9 (September 2020)
PermalinkPredicting biomass dynamics at the national extent from digital aerial photogrammetry / Bronwyn Price in International journal of applied Earth observation and geoinformation, vol 90 (August 2020)
PermalinkRoles of horizontal and vertical tree canopy structure in mitigating daytime and nighttime urban heat island effects / Jike Chen in International journal of applied Earth observation and geoinformation, vol 89 (July 2020)
PermalinkCoastline change modelling induced by climate change using geospatial techniques in Togo (West Africa) / Yawo Konko in Advances in Remote Sensing, vol 9 n° 2 (June 2020)
PermalinkEstimating spatio-temporal air temperature in London (UK) using machine learning and earth observation satellite data / Rochelle Schneider dos Santos in International journal of applied Earth observation and geoinformation, vol 88 (June 2020)
PermalinkSelf-tuning robust adjustment within multivariate regression time series models with vector-autoregressive random errors / Boris Kargoll in Journal of geodesy, vol 94 n° 5 (May 2020)
PermalinkLarge-scale two-phase estimation of wood production by poplar plantations exploiting Sentinel-2 data as auxiliary information / Agnese Marcelli in Silva fennica, vol 54 n° 2 (March 2020)
PermalinkThe application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkMODIS-based land surface temperature for climate variability and change research: the tale of a typical semi-arid to arid environment / Salahuddin M. Jaber in European journal of remote sensing, vol 53 n°1 (2020)
PermalinkRadial interpolation of GPS and leveling data of ground deformation in a resurgent caldera: application to Campi Flegrei (Italy) / Andrea Bevilacqua in Journal of geodesy, vol 94 n°2 (February 2020)
Permalink