Descripteur
Termes IGN > mathématiques > statistique mathématique > régression > régression logistique
régression logistique |
Documents disponibles dans cette catégorie (48)



Etendre la recherche sur niveau(x) vers le bas
Driving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression / Ines Grigorescu in Geocarto international, vol 37 n° 24 ([20/10/2022])
![]()
[article]
Titre : Driving factors of urban sprawl in the Romanian plain. Regional and temporal modelling using logistic regression Type de document : Article/Communication Auteurs : Ines Grigorescu, Auteur ; Gheorghe Kucsicsa, Auteur ; Bianca Mitrică, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 7220 - 7246 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de données
[Termes IGN] analyse spatio-temporelle
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] modélisation spatiale
[Termes IGN] régression logistique
[Termes IGN] Roumanie
[Termes IGN] zone urbaineRésumé : (auteur) The paper investigates built-up areas expansion after the 1990 in one of the highly urbanized regions of Romania - Romanian Plain, in order to explore the urban sprawl phenomena and its temporal and regional disparities in relation to some of the main distance driving factors. The research uses Landsat 4/5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM), and Landsat 8 Operational Land Imager (OLI) imagery to derive built-up areas and quantify their expansion over time in relation to fourteen distance explanatory factors: i.e. previous built-up areas, main road infrastructure, Bucharest city’s boundary, location of the urban centres classified according to demographic size and main economic function, forest land and water bodies. To estimate the influence of the predictors, the binary logistic regression was applied. Furthermore, to estimate the effectiveness of the predictor set in the variation of built-up areas expansion, the pseudo R2 was calculated and discussed. Moreover, to understand the future potential trend of urban sprawl and its spatial pattern, the probability maps were generated by integrating the regression coefficients of the statistically significant predictors into the spatial modeling. For the results performance assessment, the statistic Receiver Operating Characteristic and the pixel-based comparison between the real and predicted data were used. To assess possible differences at spatial and temporal scale, the analysis was carried out at regional level, for two periods: 1990–2002 and 2002–2018. In general, our findings show inverse relationship between the distance driving factors and built-up areas expansion, but the estimated predictive power suggests important disparities within the study area over the analysed periods. Overall, the statistical analysis indicate that the distance to previous build-up areas, distance to road infrastructure, distance to Bucharest and other large urban centres, and distance to urban centres with dominant industrial and service functions were more influential to urban sprawl after 1990. Furthermore, the predicted spatial data shows the highest potential of urban sprawl in the future around Bucharest, in the proximity of existing built-up areas and road infrastructure. Because of its predictive character, the present study is to be a useful tool for land managers and policy makers. Numéro de notice : A2022-777 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1967465 Date de publication en ligne : 23/08/2021 En ligne : https://doi.org/10.1080/10106049.2021.1967465 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101832
in Geocarto international > vol 37 n° 24 [20/10/2022] . - pp 7220 - 7246[article]Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach / Quoc Bao Pham in Natural Hazards, vol 113 n° 2 (September 2022)
![]()
[article]
Titre : Flood vulnerability and buildings’ flood exposure assessment in a densely urbanised city: comparative analysis of three scenarios using a neural network approach Type de document : Article/Communication Auteurs : Quoc Bao Pham, Auteur ; Sk Ajim Ali, Auteur ; Elzbieta Bielecka, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1081 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] aléa
[Termes IGN] apprentissage profond
[Termes IGN] cartographie des risques
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] inondation
[Termes IGN] modèle de simulation
[Termes IGN] prévention des risques
[Termes IGN] processus de hiérarchisation analytique
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'information géographique
[Termes IGN] Varsovie (Pologne)
[Termes IGN] vulnérabilité
[Termes IGN] zone urbaine denseRésumé : (auteur) Advances in the availability of multi-sensor, remote sensing-derived datasets, and machine learning algorithms can now provide an unprecedented possibility to predict flood events and risk. Therefore, this study was undertaken to develop a flood vulnerability map and to assess the exposure of buildings to flood risk in Warsaw, the capital of Poland. This goal was pursued in four research phases. The thirteen flood predictors were evaluated using information gain ratio (IGR), and finally reduced to eight of the most causative ones and used for flood vulnerability mapping with three machine learning algorithms, Artificial Neural Network Multi-Layer Perceptron (ANN/MLP), Deep Learning Neural Network based approach—DL4j (DLNN-DL4j) and Bayesian Logistic Regression (BLR). These algorithms show a good predictive performance with the receiver operating curve (ROC) value of 0.851, 0.877 and 0.697, respectively. The buildings’ exposure to flood was assessed in line with criteria established in European and national legal regulations. The introduced new buildings' flood hazard index (BFH) revealed a significant similarity of potential flood risk for both models, highlighting the greatest risk in zones with high vulnerability to flooding. Depending on the method used, the BFH value was 0.54 (ANN), 0.52 (DLNNs) or 0.64 (BLR). The holistic approach proposed in this study could assist local authorities in improving flood management. Numéro de notice : A2022-705 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1007/s11069-022-05336-5 Date de publication en ligne : 05/04/2022 En ligne : https://doi.org/10.1007/s11069-022-05336-5 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101569
in Natural Hazards > vol 113 n° 2 (September 2022) . - pp 1043 - 1081[article]Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method / Juan Vicente Liendro Moncada in Geocarto international, Vol 37 n° 17 ([20/08/2022])
![]()
[article]
Titre : Evapotranspiration mapping of cotton fields in Brazil: comparison between SEBAL and FAO-56 method Type de document : Article/Communication Auteurs : Juan Vicente Liendro Moncada, Auteur ; Tonny José Araújo da Silva, Auteur ; Jefferson Vieira José, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5133 - 5149 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] carte thématique
[Termes IGN] corrélation
[Termes IGN] données météorologiques
[Termes IGN] évapotranspiration
[Termes IGN] Gossypium (genre)
[Termes IGN] GRASS
[Termes IGN] image Landsat-8
[Termes IGN] Mato Grosso
[Termes IGN] modèle de Monteith
[Termes IGN] phénologie
[Termes IGN] QGIS
[Termes IGN] régression logistique
[Termes IGN] système d'information géographiqueRésumé : (auteur) The objective was to compare the evapotranspiration of cotton (Gossypium sp. L.) estimated by the SEBAL model and the FAO-56 method, throughout the phenological cycle of the plant on eight fields located in the upper area of the Rio das Mortes basin, State of Mato Grosso—Brazil. Images from the Landsat 8 satellite were used under the Geographic Information Systems environment through the capabilities of the QGIS 3.6.2 and GRASS 7.6.1 software. The reference evapotranspiration was determined by the FAO Penman–Monteith method implementing the Ref-ET software and data from the Campo Verde meteorological station of INMET—Brazil. The R software was applied to the statistical analyses of correlation and regression. The dataset of the available stages of the cotton phenological cycle shows a strong positive correlation, with approximately 68% of the evapotranspiration variation of the SEBAL model related to the estimates of the FAO-56 method. Numéro de notice : A2022-700 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920633 Date de publication en ligne : 06/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920633 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101559
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5133 - 5149[article]Assessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])
![]()
[article]
Titre : Assessing and mapping landslide susceptibility using different machine learning methods Type de document : Article/Communication Auteurs : Osman Orhan, Auteur ; Suleyman Sefa Bilgilioglu, Auteur ; Zehra Kaya, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2795 - 2820 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effondrement de terrain
[Termes IGN] lithologie
[Termes IGN] pente
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste marge
[Termes IGN] TurquieRésumé : (auteur) The main aim of the present study was to produce and compare landslide susceptibility maps by using five machine learning techniques, namely, artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), random forest (RF) and, classification and regression tree (CART). The study area was determined as the Arhavi-Kabisre river basin, a region in which the most landslide incidents occur in Turkey. Firstly, a landslide inventory was produced by identifying a total of 252 landslides. Secondly, a total of 11 landslide conditioning factors were considered for the landslide susceptibility mapping. Subsequently, the five machine learning techniques were constructed with the help of the training dataset for the landslide susceptibility maps. Finally, the receiver operating characteristic (ROC), sensitivity, specificity, F-measure, accuracy and kappa index were applied to compare and validate the performance of the five machine learning techniques. Numéro de notice : A2022-594 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1837258 Date de publication en ligne : 30/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1837258 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101298
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2795 - 2820[article]Wood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkExploring the advantages of the maximum entropy model in calibrating cellular automata for urban growth simulation: a comparative study of four methods / Bin Zhang in GIScience and remote sensing, vol 59 n° 1 (2022)
PermalinkCombining a class-weighted algorithm and machine learning models in landslide susceptibility mapping: A case study of Wanzhou section of the Three Gorges Reservoir, China / Huijuan Zhang in Computers & geosciences, vol 158 (January 2022)
PermalinkA GIS-based landslide susceptibility mapping and variable importance analysis using artificial intelligent training-based methods / Pengxiang Zhao in Remote sensing, vol 14 n° 1 (January-1 2022)
PermalinkIncorporation of spatial anisotropy in urban expansion modelling with cellular automata / Jinqu Zhang in International journal of geographical information science IJGIS, vol 36 n° 1 (January 2022)
PermalinkA rapid assessment method for earthquake-induced landslide casualties based on GIS and logistic regression model / Yuqian Dai in Geomatics, Natural Hazards and Risk, vol 13 (2022)
PermalinkGIS-based study on the environmental sensitivity to pollution and susceptibility to eutrophication in Burullus Lake, Egypt / Muhammad A. El-Alfy in Marine geodesy, vol 44 n° 6 (November 2021)
Permalink3D map creation using crowdsourced GNSS data / Terence Lines in Computers, Environment and Urban Systems, vol 89 (September 2021)
PermalinkRapid ecosystem change at the southern limit of the Canadian Arctic, Torngat Mountains National Park / Emma L. Davis in Remote sensing, vol 13 n° 11 (June-1 2021)
PermalinkA comparative study of heterogeneous ensemble-learning techniques for landslide susceptibility mapping / Zhice Fang in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
Permalink