Descripteur
Termes IGN > mathématiques > statistique mathématique > régression > régression linéaire > régression multiple
régression multipleSynonyme(s)régression linéaire multiple |
Documents disponibles dans cette catégorie (52)



Etendre la recherche sur niveau(x) vers le bas
Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models / Dibyendu Deb in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Aboveground biomass estimation of an agro-pastoral ecology in semi-arid Bundelkhand region of India from Landsat data: a comparison of support vector machine and traditional regression models Type de document : Article/Communication Auteurs : Dibyendu Deb, Auteur ; Shovik Deb, Auteur ; Debasis Chakraborty, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1043 - 1058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] distribution spatiale
[Termes IGN] image Landsat-8
[Termes IGN] Inde
[Termes IGN] indice de végétation
[Termes IGN] modèle de régression
[Termes IGN] point d'appui
[Termes IGN] régression linéaire
[Termes IGN] régression multiple
[Termes IGN] séparateur à vaste marge
[Termes IGN] zone semi-arideRésumé : (auteur) This study compared the traditional regression models and support vector machine (SVM) for estimation of aboveground biomass (ABG) of an agro-pastoral ecology using vegetation indices derived from Landsat 8 satellite data as explanatory variables . The area falls in the Shivpuri Tehsil of Madhya Pradesh, India, which is predominantly a semi-arid tract of the Bundelkhand region. The Enhanced Vegetation Index-1 (EVI-1) was identified as the most suitable input variable for the regression models, although the collective effect of a number of the vegetation indices was evident. The EVI-1 was also the most suitable input variable to SVM, due to its capacity to distinctly differentiate diverse vegetation classes. The performance of SVM was better over regression models for estimation of the AGB. Based on the SVM-derived and the ground observations, the AGB of the area was precisely mapped for croplands, grassland and rangelands over the entire region. Numéro de notice : A2022-394 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1756461 Date de publication en ligne : 29/04/2020 En ligne : https://doi.org/10.1080/10106049.2020.1756461 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100688
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 1043 - 1058[article]An improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements / Olivier Bock in Atmospheric measurement techniques, vol 15 n° inconnu ([01/04/2022])
![]()
[article]
Titre : An improved vertical correction method for the inter-comparison and inter-validation of Integrated Water Vapour measurements Type de document : Article/Communication Auteurs : Olivier Bock , Auteur ; Pierre Bosser
, Auteur ; Carl Mears, Auteur
Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de géodésie spatiale
[Termes IGN] analyse comparative
[Termes IGN] correction des altitudes
[Termes IGN] données GPS
[Termes IGN] données météorologiques
[Termes IGN] erreur systématique
[Termes IGN] montagne
[Termes IGN] régression multiple
[Termes IGN] teneur intégrée en vapeur d'eau
[Termes IGN] zone intertropicaleRésumé : (auteur) Integrated Water Vapour (IWV) measurements from similar or different techniques are often inter-compared for calibration and validation purposes. Results are usually assessed in terms of bias (difference of the means), standard deviation of the differences, and linear fit slope and offset (intercept) estimates. When the instruments are located at different elevations, a correction must be applied to account for the vertical displacement between the sites. Empirical formulations are traditionally used for this correction. In this paper, we show that the widely-used correction model based on a standard, exponential, profile for water vapour cannot properly correct the bias, slope, and offset parameters simultaneously. Correcting the bias with this model degrades the slope and offset estimates, and vice-versa. This paper proposes an improved correction model which overcomes these limitations. The model uses a multi-linear regression of slope and offset parameters from a radiosonde climatology. It is able to predict monthly parameters with a root-mean-square error smaller than 0.5 kg m-2 for height differences up to 500 m. The method is applied to the inter-comparison of GPS IWV data in a tropical mountainous area and to the inter-validation of GPS and satellite microwave radiometer data. This paper also emphasizes the need for using a slope and offset regression method that accounts for errors in both variables and for correctly specifying these errors. Numéro de notice : A2022-327 Affiliation des auteurs : UMR IPGP-Géod+Ext (2020- ) Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/amt-2022-40 Date de publication en ligne : 21/04/2022 En ligne : https://doi.org/10.5194/amt-2022-40 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100492
in Atmospheric measurement techniques > vol 15 n° inconnu [01/04/2022][article]Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau / Changkun Ma in Journal of Forestry Research, vol 33 n° 2 (April 2022)
![]()
[article]
Titre : Estimation and testing of linkages between forest structure and rainfall interception characteristics of a Robinia pseudoacacia plantation on China’s Loess Plateau Type de document : Article/Communication Auteurs : Changkun Ma, Auteur ; Yi Luo, Auteur ; Mingan Shao, Auteur ; Xiaoxu Jia, Auteur Année de publication : 2022 Article en page(s) : pp 529 - 542 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] canopée
[Termes IGN] capacité de stockage
[Termes IGN] Chine
[Termes IGN] pluie
[Termes IGN] régression multiple
[Termes IGN] Robinia pseudoacacia
[Termes IGN] structure d'un peuplement forestier
[Termes IGN] zone semi-arideMots-clés libres : Rainfall interception loss Résumé : (auteur) Understanding the interaction between canopy structure and the parameters of interception loss is essential in predicting the variations in partitioning rainfall and water resources as affected by changes in canopy structure and in implementing water-based management in semiarid forest plantations. In this study, seasonal variations in rainfall interception loss and canopy storage capacity as driven by canopy structure were predicted and the linkages were tested using seasonal filed measurements. The study was conducted in nine 50 m × 50 m Robinia pseudoacacia plots in the semiarid region of China’s Loess Plateau. Gross rainfall, throughfall and stemflow were measured in seasons with and without leaves in 2015 and 2016. Results show that measured average interception loss for the nine plots were 17.9% and 9.4% of gross rainfall during periods with leaves (the growing season) and without leaves, respectively. Average canopy storage capacity estimated using an indirect method was 1.3 mm in the growing season and 0.2 mm in the leafless season. Correlations of relative interception loss and canopy storage capacity to canopy variables were highest for leaf/wood area index (LAI/WAI) and canopy cover, followed by bark area, basal area, tree height and stand density. Combined canopy cover, leaf/wood area index and bark area multiple regression models of interception loss and canopy storage capacity were established for the growing season and in the leafless season in 2015. It explained 97% and 96% of the variations in relative interception loss during seasons with and without leaves, respectively. It also explained 98% and 99% of the variations in canopy storage capacity during seasons with and without leaves, respectively. The empirical regression models were validated using field data collected in 2016. The models satisfactorily predicted relative interception loss and canopy storage capacity during seasons with and without leaves. This study provides greater understanding about the effects of changes in tree canopy structure (e.g., dieback or mortality) on hydrological processes. Numéro de notice : A2022-334 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s11676-021-01324-w Date de publication en ligne : 06/06/2021 En ligne : https://doi.org/10.1007/s11676-021-01324-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100668
in Journal of Forestry Research > vol 33 n° 2 (April 2022) . - pp 529 - 542[article]Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms / Marzieh Fadaee in Geocarto international, vol 37 n° 4 (April 2022)
![]()
[article]
Titre : Suspended sediment prediction using integrative soft computing models: on the analogy between the butterfly optimization and genetic algorithms Type de document : Article/Communication Auteurs : Marzieh Fadaee, Auteur ; Amin Mahdavi-Meymand, Auteur ; Mohammad Zounemat-Kermani, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 961 - 977 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] algorithme de Levenberg-Marquardt
[Termes IGN] algorithme génétique
[Termes IGN] analyse comparative
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] Inférence floue
[Termes IGN] modèle de simulation
[Termes IGN] optimisation (mathématiques)
[Termes IGN] régression linéaire
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificiel
[Termes IGN] sédimentRésumé : (auteur) The present study investigates the capability of two metaheuristic optimization approaches, namely the Butterfly Optimization Algorithm (BOA) and the Genetic Algorithm (GA), integrated with machine learning models in Suspended Sediment Load (SSL) prediction. The Adaptive Neuro-Fuzzy Inference System (ANFIS), Artificial Neural Network (ANN), and Multiple Linear Regression (MLR) are applied as the predictive data-driven models. Independent input variables, i.e., the water temperature (T), river discharge (Q), and specific conductance (SC) are used for the prediction of SSL based on several statistical indices. The results indicate that the performances of all studied models were close to one another; moreover, the metaheuristic algorithms were found to increase the accuracy of the ANFIS and ANN models for approximately 11.73 percent and 4.30 percent, respectively. In general, the BOA outperformed the GA in enhancing the optimization performance of the learning process in the applied machine learning models. Numéro de notice : A2022-392 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1753821 Date de publication en ligne : 29/07/2020 En ligne : https://doi.org/10.1080/10106049.2020.1753821 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100685
in Geocarto international > vol 37 n° 4 (April 2022) . - pp 961 - 977[article]Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data / Fardin Moradi in Forests, vol 13 n° 1 (January 2022)
![]()
[article]
Titre : Estimating aboveground biomass in dense Hyrcanian forests by the use of Sentinel-2 data Type de document : Article/Communication Auteurs : Fardin Moradi, Auteur ; Ali Asghar Darvishsefat, Auteur ; Manizheh Rajab Pourrahmati, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse aérienne
[Termes IGN] Carpinus betulus
[Termes IGN] classification barycentrique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] image Sentinel-MSI
[Termes IGN] Iran
[Termes IGN] régression multiple
[Termes IGN] réseau neuronal artificielNuméro de notice : A2022-080 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13010104 Date de publication en ligne : 12/01/2022 En ligne : https://doi.org/10.3390/f13010104 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99472
in Forests > vol 13 n° 1 (January 2022) . - n° 104[article]Proceedings of the 1st Conference of the European Association on Quality Control of Bridges and Structures : EUROSTRUCT 2021. An automated machine learning-based approach for structural novelty detection based on SHM / Nicolas Manzini (2022)
PermalinkMulti-sensor aboveground biomass estimation in the broadleaved hyrcanian forest of Iran / Ghasem Ronoud in Canadian journal of remote sensing, vol 47 n° 6 ([01/11/2021])
PermalinkRetrieval of ultraviolet diffuse attenuation coefficients from ocean color using the kernel principal components analysis over ocean / Kunpeng Sun in IEEE Transactions on geoscience and remote sensing, vol 59 n° 6 (June 2021)
PermalinkEstimation of some stand parameters from textural features from WorldView-2 satellite image using the artificial neural network and multiple regression methods: a case study from Turkey / Alkan Günlü in Geocarto international, vol 36 n° 8 ([01/05/2021])
PermalinkAssessing the interest of a multi-modal gap-filling strategy for monitoring changes in grassland parcels / Anatol Garioud (2021)
PermalinkArtificial neural network models by ALOS PALSAR data for aboveground stand carbon predictions of pure beech stands: a case study from northern of Turkey / Alkan Günlü in Geocarto international, Vol 35 n° 1 ([02/01/2020])
PermalinkKnowing is not enough: exploring the missing link between climate change knowledge and action of German forest owners and managers / Yvonne Hengst-Ehrhart in Annals of Forest Science [en ligne], Vol 76 n° 4 (December 2019)
PermalinkMulti-sensor prediction of Eucalyptus stand volume: A support vector approach / Guilherme Silverio Aquino de Souza in ISPRS Journal of photogrammetry and remote sensing, vol 156 (October 2019)
PermalinkTransformation 3D des coordonnées GPS en coordonnées Nord Sahara avec la MRE / Medjahed Sid Ahmed in Géomatique expert, n° 130-131 (octobre - décembre 2019)
PermalinkSea level variation around Australia and its relation to climate indices / Armin Agha Karimi in Marine geodesy, vol 42 n° 5 (September 2019)
Permalink