Descripteur



Etendre la recherche sur niveau(x) vers le bas
A graph-based semi-supervised approach to classification learning in digital geographies / Pengyuan Liu in Computers, Environment and Urban Systems, vol 86 (March 2021)
![]()
[article]
Titre : A graph-based semi-supervised approach to classification learning in digital geographies Type de document : Article/Communication Auteurs : Pengyuan Liu, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2021 Article en page(s) : n° 101583 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse contextuelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] approche participative
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] étiquetage sémantique
[Termes descripteurs IGN] partage de données localisées
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] Time-geographyRésumé : (auteur) As the distinction between online and physical spaces rapidly degrades, social media have now become an integral component of how many people's everyday experiences are mediated. As such, increasing interest has emerged in exploring how the content shared through those online platforms comes to contribute to the collaborative creation of places in physical space at the urban scale. Exploring digital geographies of social media data using methods such as qualitative coding (i.e., content labelling) is a flexible but complex task, commonly limited to small samples due to its impracticality over large datasets. In this paper, we propose a new tool for studies in digital geographies, bridging qualitative and quantitative approaches, able to learn a set of arbitrary labels (qualitative codes) on a small, manually-created sample and apply the same labels on a larger set. We introduce a semi-supervised, deep neural network approach to classify geo-located social media posts based on their textual and image content, as well as geographical and temporal aspects. Our innovative approach is rooted in our understanding of social media posts as augmentations of the time-space configurations that places are, and it comprises a stacked multi-modal autoencoder neural network to create joint representations of text and images, and a spatio-temporal graph convolution neural network for semi-supervised classification. The results presented in this paper show that our approach performs the classification of social media content with higher accuracy than traditional machine learning models as well as two state-of-art deep learning frameworks. Numéro de notice : A2021-024 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101583 date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101583 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96608
in Computers, Environment and Urban Systems > vol 86 (March 2021) . - n° 101583[article]Joint promotion partner recommendation systems using data from location-based social networks / Yi-Chung Chen in ISPRS International journal of geo-information, vol 10 n° 2 (February 2021)
![]()
[article]
Titre : Joint promotion partner recommendation systems using data from location-based social networks Type de document : Article/Communication Auteurs : Yi-Chung Chen, Auteur ; Hsi-Ho Huang, Auteur ; Sheng-Min Chiu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 57 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Facebook
[Termes descripteurs IGN] Foursquare
[Termes descripteurs IGN] géomercatique
[Termes descripteurs IGN] New York (Etats-Unis ; ville)
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] politique commerciale
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Joint promotion is a valuable business strategy that enables companies to attract more customers at lower operational cost. However, finding a suitable partner can be extremely difficult. Conventionally, one of the most common approaches is to conduct survey-based analysis; however, this method can be unreliable as well as time-consuming, considering that there are likely to be thousands of potential partners in a city. This article proposes a framework to recommend Joint Promotion Partners using location-based social networks (LBSN) data. We considered six factors in determining the suitability of a partner (customer base, association, rating and awareness, prices and star ratings, distance, and promotional strategy) and developed efficient algorithms to perform the required calculations. The effectiveness and efficiency of our algorithms were verified using the Foursquare dataset and real-life case studies. Numéro de notice : A2021-152 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10020057 date de publication en ligne : 30/01/2021 En ligne : https://doi.org/10.3390/ijgi10020057 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97063
in ISPRS International journal of geo-information > vol 10 n° 2 (February 2021) . - n° 57[article]Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks / Hang Zhang in ISPRS International journal of geo-information, vol 10 n° 1 (January 2021)
![]()
[article]
Titre : Incorporating memory-based preferences and point-of-interest stickiness into recommendations in location-based social networks Type de document : Article/Communication Auteurs : Hang Zhang, Auteur ; Mingxin Gan, Auteur ; Xi Sun, Auteur Année de publication : 2021 Article en page(s) : n° 10 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] approche participative
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] filtrage d'information
[Termes descripteurs IGN] interprétation (psychologie)
[Termes descripteurs IGN] mémoire
[Termes descripteurs IGN] mobilité
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] tourismeRésumé : (auteur) In location-based social networks (LBSNs), point-of-interest (POI) recommendations facilitate access to information for people by recommending attractive locations they have not previously visited. Check-in data and various contextual factors are widely taken into consideration to obtain people’s preferences regarding POIs in existing POI recommendation methods. In psychological effect-based POI recommendations, the memory-based attenuation of people’s preferences with respect to POIs, e.g., the fact that more attention is paid to POIs that were checked in to recently than those visited earlier, is emphasized. However, the memory effect only reflects the changes in an individual’s check-in trajectory and cannot discover the important POIs that dominate their mobility patterns, which are related to the repeat-visit frequency of an individual at a POI. To solve this problem, in this paper, we developed a novel POI recommendation framework using people’s memory-based preferences and POI stickiness, named U-CF-Memory-Stickiness. First, we used the memory-based preference-attenuation mechanism to emphasize personal psychological effects and memory-based preference evolution in human mobility patterns. Second, we took the visiting frequency of POIs into consideration and introduced the concept of POI stickiness to identify the important POIs that reflect the stable interests of an individual with respect to their mobility behavior decisions. Lastly, we incorporated the influence of both memory-based preferences and POI stickiness into a user-based collaborative filtering framework to improve the performance of POI recommendations. The results of the experiments we conducted on a real LBSN dataset demonstrated that our method outperformed other methods. Numéro de notice : A2021-148 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10010036 date de publication en ligne : 15/01/2021 En ligne : https://doi.org/10.3390/ijgi10010036 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97056
in ISPRS International journal of geo-information > vol 10 n° 1 (January 2021) . - n° 10[article]RegNet: a neural network model for predicting regional desirability with VGI data / Wenzhong Shi in International journal of geographical information science IJGIS, vol 35 n° 1 (January 2021)
![]()
[article]
Titre : RegNet: a neural network model for predicting regional desirability with VGI data Type de document : Article/Communication Auteurs : Wenzhong Shi, Auteur ; Zhewei Liu, Auteur ; Zhenlin An, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 175 - 192 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] niveau local
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] réseau social géodépendantRésumé : (auteur) Volunteered geographic information can be used to predict regional desirability. A common challenge regarding previous works is that intuitive empirical models, which are inaccurate and bring in perceptual bias, are traditionally used to predict regional desirability. This results from the fact that the hidden interactions between user online check-ins and regional desirability have not been revealed and clearly modelled yet. To solve the problem, a novel neural network model ‘RegNet’ is proposed. The user check-in history is input into a neural network encoder structure firstly for redundancy reduction and feature learning. The encoded representation is then fed into a hidden-layer structure and the regional desirability is predicted. The proposed RegNet is data-driven and can adaptively model the unknown mappings from input to output, without presumed bias and prior knowledge. We conduct experiments with real-world datasets and demonstrate RegNet outperforms state-of-the-art methods in terms of ranking quality and prediction accuracy of rating. Additionally, we also examine how the structure of encoder affects RegNet performance and suggest on choosing proper sizes of encoded representation. This work demonstrates the effectiveness of data-driven methods in modelling the hidden unknown relationships and achieving a better performance over traditional empirical methods. Numéro de notice : A2021-023 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768261 date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768261 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96526
in International journal of geographical information science IJGIS > vol 35 n° 1 (January 2021) . - pp 175 - 192[article]Exploring the heterogeneity of human urban movements using geo-tagged tweets / Ding Ma in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
![]()
[article]
Titre : Exploring the heterogeneity of human urban movements using geo-tagged tweets Type de document : Article/Communication Auteurs : Ding Ma, Auteur ; Toshihiro Osaragi, Auteur ; Takuya Oki, Auteur ; Bin Jiang, Auteur Année de publication : 2020 Article en page(s) : pp 2475 -2 496 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] données issues des réseaux sociaux
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] espace urbain
[Termes descripteurs IGN] flux de données
[Termes descripteurs IGN] géoétiquetage
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] hétérogénéité
[Termes descripteurs IGN] Londres
[Termes descripteurs IGN] migration humaine
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle orienté agent
[Termes descripteurs IGN] population urbaine
[Termes descripteurs IGN] Tokyo (Japon)
[Termes descripteurs IGN] TwitterRésumé : (auteur) The availability of vast amounts of location-based data from social media platforms such as Twitter has enabled us to look deeply into the dynamics of human movement. The aim of this paper is to leverage a large collection of geo-tagged tweets and the street networks of two major metropolitan areas—London and Tokyo—to explore the underlying mechanism that determines the heterogeneity of human mobility patterns. For the two target cities, hundreds of thousands of tweet locations and road segments were processed to generate city hotspots and natural streets. User movement trajectories and city hotspots were then used to build a hotspot network capable of quantitatively characterizing the heterogeneous movement patterns of people within the cities. To emulate observed movement patterns, the study conducts a two-level agent-based simulation that includes random walks through the hotspot networks and movements in the street networks using each of three distance types—metric, angular and combined. Comparisons of the simulated and observed movement flows at the segment and street levels show that the heterogeneity of human urban movements at the collective level is mainly shaped by the scaling structure of the urban space. Numéro de notice : A2020-692 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1718153 date de publication en ligne : 24/01/2020 En ligne : https://doi.org/10.1080/13658816.2020.1718153 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96233
in International journal of geographical information science IJGIS > vol 34 n° 12 (December 2020) . - pp 2475 -2 496[article]How urban places are visited by social groups? Evidence from matrix factorization on mobile phone data / Chaogui Kang in Transactions in GIS, Vol 24 n° 6 (December 2020)
PermalinkSocial media as passive geo-participation in transportation planning – how effective are topic modeling & sentiment analysis in comparison with citizen surveys? / Oliver Lock in Geo-spatial Information Science, vol 23 n° 4 (December 2020)
PermalinkEvaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkPrivacy-aware visualization of volunteered geographic information (VGI) to analyze spatial activity: A benchmark implementation / Alexander Dunkel in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
PermalinkVolunteered geographic information research in the first decade: a narrative review of selected journal articles in GIScience / Yingwei Yan in International journal of geographical information science IJGIS, vol 34 n° 9 (September 2020)
PermalinkWater level prediction from social media images with a multi-task ranking approach / P. Chaudhary in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
PermalinkExploration of OpenStreetMap missing built-up areas using twitter hierarchical clustering and deep learning in Mozambique / Hao Li in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
PermalinkLos Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkA name‐led approach to profile urban places based on geotagged Twitter data / Juntao Lai in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkAdvancing the theory and practice of system evaluation: a case study in geovisual analytics of social media / Alexander Savelyev in International journal of cartography, Vol 6 n° 2 (July 2020)
Permalink