Descripteur
Termes IGN > mathématiques > statistique mathématique > statistique descriptive
statistique descriptive
Commentaire :
Employé pour :
analyse statistique, méthode d'analyse statistique, statistique descriptive, statistique économique. économie politique. >> économétrie, méthode statistique, statistique mathématique. >>Terme(s) spécifique(s) : dépendance (statistique), analyse de régression, analyse de variance, biométrie, corrélation (statistique), prise de décision (statistique), écart type, échantillonnage (statistique), indice (économie politique), lissage (statistique), mécanique statistique, modèle linéaire (statistique), moyenne, observation aberrante (statistique), probabilité, produit national brut, recensement, réduction des données (statistique), service statistique, variation saisonnière (économie politique), grande déviation, fonctionnelle statistique, modèle non linéaire (statistique), statistique légale, donnée sphérique, statistique médicale, donnée circulaire, degré de liberté (physique), coefficient kappa, édition (informatique). Source(s) : Laval RVM, 1991-08. Equiv. LCSH : Statistics. Domaine(s) : 510. Voir aussi |
Documents disponibles dans cette catégorie (12)



Etendre la recherche sur niveau(x) vers le bas
On the determination of transformation parameters between different ITRS realizations using procrustes approach in Turkey / Mevlut Yetkin in Journal of applied geodesy, vol 11 n° 3 (September 2017)
![]()
[article]
Titre : On the determination of transformation parameters between different ITRS realizations using procrustes approach in Turkey Type de document : Article/Communication Auteurs : Mevlut Yetkin, Auteur ; Kutubuddin Ansari, Auteur Année de publication : 2017 Article en page(s) : pp 123 - 130 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] analyse procustéenne
[Termes IGN] International Terrestrial Reference Frame
[Termes IGN] réseau géodésique permanent
[Termes IGN] transformation de coordonnées
[Termes IGN] transformation de Helmert
[Termes IGN] TurquieRésumé : (Auteur) The International Terrestrial Reference Frame (ITRF) solutions that are published by the International Earth Rotation and Reference Systems Service (IERS) are annual realizations of the ITRS (International Terrestrial Reference System). The results expressed in two different ITRS realizations can be compared using the transformation parameters that provide a link between different ITRF solutions. Generally, the 7-parameter (the three translation parameters, three rotation parameters and one scale factor) Helmert transformation is employed to compute the transformation parameters. However, the number of transformation parameters can be increased for better understanding. For example, 3 different scale factors may be computed instead of one scale factor. In this paper, the 9-parameter (the three translation parameters, three rotation parameters and three scale factors) transformation model and its solution by Procrustes approach is considered. Transformation parameters between ITRF 05 and ITRF 08 for Turkey have been computed in both 7-parameter model and 9-parameter model and a numerical example has been given to understand the difference between two models in a better way. An explanation about the proposed methodology as a flow chart also has been shown in appendix. Numéro de notice : A2017-567 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2016-0048 En ligne : https://doi.org/10.1515/jag-2016-0048 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86687
in Journal of applied geodesy > vol 11 n° 3 (September 2017) . - pp 123 - 130[article]Shadow detection and removal in RGB VHR images for land use unsupervised classification / A. Movia in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
![]()
[article]
Titre : Shadow detection and removal in RGB VHR images for land use unsupervised classification Type de document : Article/Communication Auteurs : A. Movia, Auteur ; A. Beina, Auteur ; F. Crosilla, Auteur Année de publication : 2016 Article en page(s) : pp 485 - 495 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image numérique
[Termes IGN] analyse procustéenne
[Termes IGN] anisotropie
[Termes IGN] classification non dirigée
[Termes IGN] détection d'ombre
[Termes IGN] détection de changement
[Termes IGN] factorisation de Cholesky
[Termes IGN] image à très haute résolution
[Termes IGN] image RVBRésumé : (Auteur) Nowadays, high resolution aerial images are widely available thanks to the diffusion of advanced technologies such as UAVs (Unmanned Aerial Vehicles) and new satellite missions. Although these developments offer new opportunities for accurate land use analysis and change detection, cloud and terrain shadows actually limit benefits and possibilities of modern sensors.
Focusing on the problem of shadow detection and removal in VHR color images, the paper proposes new solutions and analyses how they can enhance common unsupervised classification procedures for identifying land use classes related to the CO2 absorption.
To this aim, an improved fully automatic procedure has been developed for detecting image shadows using exclusively RGB color information, and avoiding user interaction. Results show a significant accuracy enhancement with respect to similar methods using RGB based indexes.
Furthermore, novel solutions derived from Procrustes analysis have been applied to remove shadows and restore brightness in the images. In particular, two methods implementing the so called “anisotropic Procrustes” and the “not-centered oblique Procrustes” algorithms have been developed and compared with the linear correlation correction method based on the Cholesky decomposition.
To assess how shadow removal can enhance unsupervised classifications, results obtained with classical methods such as k-means, maximum likelihood, and self-organizing maps, have been compared to each other and with a supervised clustering procedure.Numéro de notice : A2016-793 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.05.004 En ligne : https://doi.org/10.1016/j.isprsjprs.2016.05.004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82510
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 485 - 495[article]Developing a dynamic growth model for maritime pine in Asturias (NW Spain): comparison with nearby regions / Manuel Arias-Rodil in Annals of Forest Science, vol 73 n° 2 (June 2016)
![]()
[article]
Titre : Developing a dynamic growth model for maritime pine in Asturias (NW Spain): comparison with nearby regions Type de document : Article/Communication Auteurs : Manuel Arias-Rodil, Auteur ; Marcos Barrio-Anta, Auteur ; Ulises Diéguez-Aranda, Auteur Année de publication : 2016 Article en page(s) : pp 297 - 320 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Végétation
[Termes IGN] bois sur pied
[Termes IGN] croissance des arbres
[Termes IGN] Espagne
[Termes IGN] hauteur des arbres
[Termes IGN] modèle de simulation
[Termes IGN] Pinus pinaster
[Termes IGN] statistique descriptive
[Termes IGN] surface terrièreRésumé : (auteur) Key message: A dynamic growth model was developed for maritime pine in Asturias. During the evaluation process, a stand volume ratio function proved the best of two alternative methods for estimating merchantable volume. Comparison of the developed model with existing models for nearby regions showed that a single model may suffice for the whole of the NW Iberian Peninsula.
Context: Maritime pine is one of the most important tree species in NW Spain. There was no existing dynamic growth model for this species in Asturias.
Aims: To develop a dynamic growth model for maritime pine in Asturias, by evaluating two different methods of estimating volume (a disaggregation system and a stand volume ratio function), and to compare the developed model with existing models for Galicia and northern Portugal are the goals of this study.
Methods: The dynamic model is based on the state-space approach, in which three state variables characterize the stand at any point in time: dominant height, number of stems per hectare and stand basal area. The transition function for the first variable was developed on the basis of stem analysis data in a previous study, while the corresponding functions for the last two variables were simultaneously fitted with data obtained from successive measurements of permanent plots. An appendix outlining the implementation of a stand growth simulator in the R environment is included to facilitate model use and evaluation.
Results: When the whole model was used to project the stand conditions, the stand volume ratio function performed best, yielding a root mean square error of 22.4 m3 ha−1 and a critical error of 18.4 %. Comparison with models developed for other regions revealed both similarities and differences, some of which may be attributed to an unequal distribution of the available data in age and site quality classes.
Conclusion: The proposed dynamic growth model provided accurate results, and comparison with other region-specific models showed that a single dynamic model may suffice for the whole of the NW Iberian Peninsula.Numéro de notice : A2016-350 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1007/s13595-015-0501-x Date de publication en ligne : 25/08/2015 En ligne : https://doi.org/10.1007/s13595-015-0501-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81059
in Annals of Forest Science > vol 73 n° 2 (June 2016) . - pp 297 - 320[article]Detection and labeling of sensitive areas in hydrological cartography using vector statistics / Elia Quirós in IEEE Transactions on geoscience and remote sensing, vol 54 n° 1 (January 2016)
![]()
[article]
Titre : Detection and labeling of sensitive areas in hydrological cartography using vector statistics Type de document : Article/Communication Auteurs : Elia Quirós, Auteur ; María-Eugenia Polo, Auteur ; Ángel M. Felicísimo, Auteur Année de publication : 2016 Article en page(s) : pp 189 - 196 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] carte hydrographique
[Termes IGN] détection automatique
[Termes IGN] données vectorielles
[Termes IGN] modèle numérique de terrain
[Termes IGN] réseau hydrographique
[Termes IGN] statistique descriptive
[Termes IGN] système d'information géographiqueRésumé : (Auteur) The recognition and delineation of hydrological stream lines has, traditionally, been a subjective manual task in cartography. However, digital elevation models (DEMs) are nowadays often employed to extract stream lines automatically, via the use of geographic information systems. Whereas the automatic generation of hydrological networks presents errors, their manual recognition can be almost arbitrary. In this paper, we propose a methodology with which to label potentially sensitive zones in the comparison of hydrological cartographic networks. Two different sources were analyzed: a conventional cartographic stream network, and one automatically extracted from a DEM. The 72 500 vectors of displacement, representing the spatial disagreement (or fit) between the stream networks, were also examined. A number of remarkable distributions of large errors were identified that were a cause for alarm; these errors are here denoted by “warnings” and are classified into six different groups. The displacement vectors were also analyzed in terms of modulus and azimuth, thereby allowing the analysis of the isotropy of the spatial displacements. We propose the use of all of the derived information as metadata for hydrological spatial quality, as well as the extension of the methodology to any other type of cartographic element (roads, cadastral, etc.) for which two different vector format information sources are compared. Numéro de notice : A2016-074 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2453112 En ligne : http://dx.doi.org/10.1109/TGRS.2015.2453112 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79842
in IEEE Transactions on geoscience and remote sensing > vol 54 n° 1 (January 2016) . - pp 189 - 196[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2016011 SL Revue Centre de documentation Revues en salle Disponible
Titre : Statistical analysis handbook : a comprehensive handbook of statistical concepts, techniques and software tools Type de document : Guide/Manuel Auteurs : Michael J. de Smith, Auteur Editeur : STAT!Ref Année de publication : 2015 Importance : 677 p. Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Statistiques
[Termes IGN] analyse de données
[Termes IGN] autocorrélation
[Termes IGN] corrélation
[Termes IGN] covariance
[Termes IGN] données statistiques
[Termes IGN] estimation statistique
[Termes IGN] exploration de données
[Termes IGN] régression
[Termes IGN] série temporelle
[Termes IGN] statistique descriptive
[Termes IGN] variable aléatoire
[Termes IGN] varianceIndex. décimale : 23.60 Statistiques et probabilités Résumé : (Auteur) [Introduction] The definition of what is meant by statistics and statistical analysis has changed considerably over the last few decades. Here are two contrasting definitions of what statistics is, from eminent professors in the field, some 60+ years apart: "Statistics is the branch of scientific method which deals with the data obtained by counting or measuring the properties of populations of natural phenomena. In this definition 'natural phenomena' includes all the happenings of the external world, whether human or not." Professor Maurice Kendall, 1943, p2 [MK1]
"Statistics is: the fun of finding patterns in data; the pleasure of making discoveries; the import of deep philosophical questions; the power to shed light on important decisions, and the ability to guide decisions..... in business, science, government, medicine, industry..." Professor David Hand [DH1]
As these two definitions indicate, the discipline of statistics has moved from being grounded firmly in the world of measurement and scientific analysis into the world of exploration, comprehension and decision-making. At the same time its usage has grown enormously, expanding from a relatively small set of specific application areas (such as design of experiments and computation of life insurance premiums) to almost every walk of life. A particular feature of this change is the massive expansion in information (and misinformation) available to all sectors and age-groups in society. Understanding this information, and making well-informed decisions on the basis of such understanding, is the primary function of modern statistical methods.
Our objective in producing this Handbook is to be comprehensive in terms of concepts and techniques (but not necessarily exhaustive), representative and independent in terms of software tools, and above all practical in terms of application and implementation. However, we believe that it is no longer appropriate to think of a standard, discipline-specific textbook as capable of satisfying every kind of new user need. Accordingly, an innovative feature of our approach here is the range of formats and channels through which we disseminate the material - web, ebook and in due course, print. A major advantage of the electronic formats is that the text can be embedded with internal and external hyperlinks. In this Handbook we utilize both forms of link, with external links often referring to a small number of well-established sources, notably MacTutor for bibliographic information and a number of other web resources, such as Eric Weisstein's Mathworld and the statistics portal of Wikipedia, for providing additional material on selected topics. The treatment of topics in this Handbook is relatively informal, in that we do not provide mathematical proofs for much of the material discussed. However, where it is felt particularly useful to clarify how an expression arises, we do provide simple derivations. More generally we adopt the approach of using descriptive explanations and worked examples in order to clarify the usage of different measures and procedures. Frequently convenient software tools are used for this purpose, notably SPSS/PASW, The R Project, MATLab and a number of more specialized software tools where appropriate.
Just as all datasets and software packages contain errors, known and unknown, so too do all books and websites, and we expect that there will be errors despite our best efforts to remove these! Some may be genuine errors or misprints, whilst others may reflect our use of specific versions of software packages and their documentation. Inevitably with respect to the latter, new versions of the packages that we have used to illustrate this Handbook will have appeared even before publication, so specific examples, illustrations and comments on scope or restrictions may have been superseded. In all cases the user should review the documentation provided with the software version they plan to use, check release notes for changes and known bugs, and look at any relevant online services (e.g. user/developer forums and blogs on the web) for additional materials and insights. The interactive web version of this Handbook may be accessed via the associated Internet site: www.statsref.com. The contents and sample sections of the PDF version may also be accessed from this site. In both cases the information is regularly updated. The Internet is now well established as society’s principal mode of information exchange, and most aspiring users of statistical methods are accustomed to searching for material that can easily be customized to specific needs. Our objective for such users is to provide an independent, reliable and authoritative first port of call for conceptual, technical, software and applications material that addresses the panoply of new user requirements.
Readers wishing to obtain a more in-depth understanding of the background to many of the topics covered in this Handbook should review the Suggested Reading topic. Those seeking examples of software tools that might be used for statistical analysis should refer to the Software section.Note de contenu : Introduction
- Statistical data
- Statistical concepts
- Descriptive statistics
- Key functions and expressions
- Data transformation and standardization
- Data exploration
- Randomness and randomization
- Correlation and autocorrelation
- Estimation and estimators
- Classical tests
- Contingency tables
- Design of experiments
- Analysis of variance and covariance
- Regression and smoothing
- Time series analysis and temporal autocorrelation
- Resources (Distribution tables, R code snippets, Statistical software etc)
Afterword: Big DataNuméro de notice : 22862 Affiliation des auteurs : non IGN Thématique : MATHEMATIQUE Nature : Manuel En ligne : http://www.statsref.com/HTML/index.html Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89298 PermalinkAssessment of a semantic statistical approach to detecting land covers change using inconsistent data sets / A. Comber in Photogrammetric Engineering & Remote Sensing, PERS, vol 70 n° 8 (August 2004)
PermalinkPermalinkEstimating local variations in land use statistics / A. Geddes in International journal of geographical information science IJGIS, vol 17 n° 4 (june 2003)
PermalinkPermalinkIdentifier les zones noires d'un réseau routier par l'autocorrélation spatiale locale : analyses de sensibilité et aspects opérationnels / Benoit Flahaut in Revue internationale de géomatique, vol 12 n° 2 (juin - août 2002)
PermalinkPermalink