Descripteur
Termes IGN > sciences naturelles > sciences de la Terre et de l'univers > géosciences > géographie physique > météorologie > température de surface > température de surface de la mer
température de surface de la merSynonyme(s)TSMVoir aussi |
Documents disponibles dans cette catégorie (75)



Etendre la recherche sur niveau(x) vers le bas
Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model / Zhenyang Du in Journal of Marine Systems, vol 237 (January 2023)
![]()
[article]
Titre : Geographic-dependent variational parameter estimation: A case study with a 2D ocean temperature model Type de document : Article/Communication Auteurs : Zhenyang Du, Auteur ; Xuefeng Zhang, Auteur ; et al., Auteur Année de publication : 2023 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] assimilation des données
[Termes IGN] estimation statistique
[Termes IGN] modèle océanographique
[Termes IGN] océanographie spatiale
[Termes IGN] température de surface de la mer
[Termes IGN] teneur en chaleur de l'océanRésumé : (auteur) Using observational information to tune uncertain physical parameters in an ocean model via a robust data assimilation method has great potential to reduce model bias and improve the quality of sea temperature analysis and prediction. However, how observational information should be used to optimize geographic-dependent parameters through four-dimensional variational (4DVAR) data assimilation, which is one of the most prevailing assimilation methods, has not been fully studied. In this study, a two-step 4DVAR method is proposed to enhance parameter correction when the assimilation model contains biased geographic-dependent parameters within a biased model framework. Here, the biased parameters are set to an oceanic eddy diffusion coefficient, Kv, that plays an important role in modulating synoptic, seasonal and long-term changes in ocean heat content. Within a twin assimilation experiment framework, the temperature “observations” generated from sampling a “truth” model are assimilated into a biased model to investigate to what extent Kv can be estimated using the 4DVAR method when Kv remains geographic-dependent. The results show that the geographic-dependent Kv distribution can be optimally estimated to further improve the sea temperature analysis performance compared with the state estimation only method. In addition, the model prediction performance is also discussed with optimally estimated parameters under various conditions of noisy and/or sparse ocean observations. These results provide some insights for the prediction of ocean temperature mixing and stratification in a 3D primitive ocean numerical model using 4DVAR data assimilation. Numéro de notice : A2023-080 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jmarsys.2022.103824 En ligne : https://doi.org/10.1016/j.jmarsys.2022.103824 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102716
in Journal of Marine Systems > vol 237 (January 2023)[article]Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach / Hakan Oktay Aydınlı in Applied geomatics, vol 14 n° 4 (December 2022)
![]()
[article]
Titre : Sea surface temperature prediction model for the Black Sea by employing time-series satellite data: a machine learning approach Type de document : Article/Communication Auteurs : Hakan Oktay Aydınlı, Auteur ; Ali Ekincek, Auteur ; Mervegül Aykanat-Atay, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 669 - 678 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] apprentissage automatique
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] détection de changement
[Termes IGN] données Copernicus
[Termes IGN] image Aqua-MODIS
[Termes IGN] méthode des moindres carrés
[Termes IGN] modèle de simulation
[Termes IGN] Noire, mer
[Termes IGN] optimisation (mathématiques)
[Termes IGN] série temporelle
[Termes IGN] température de surface de la merRésumé : (auteur) High temporal resolution remote sensing images provide continuous data about the marine environment, which is critical for gaining extensive knowledge about the aquatic environment and marine species. Sea surface temperature (SST) is one of the basic parameters that can be obtained with the help of remote sensing. Long-term alterations in the SST can affect the aquatic environment and marine species, such as the life expectancy of anchovies in the Black Sea. Forecasting the dynamics of SSTs is crucial for detecting and eliminating the SST-oriented impacts. The goal of the current study is to construct a predictive model to estimate the daily SST value for the mid-Black Sea using a machine learning approach by employing time-series satellite data from 2008 to 2021. Turkey’s mid-Black Sea coastal line, comprising Ordu, Samsun, and Sinop stations, was chosen as the study area. The SST predictive model was represented by applying the recurrent neural network (RNN) long- and short-term memory (LSTM). Adam stochastic optimization was used for validation, and the mean square error (MSE) for each location was found to be 0.914, 0.815, and 0.802, respectively. The findings indicate that our model is significantly promising for accurate and effective short- and midterm daily SST prediction. Numéro de notice : A2022-894 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-022-00462-y Date de publication en ligne : 23/08/2022 En ligne : https://doi.org/10.1007/s12518-022-00462-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102242
in Applied geomatics > vol 14 n° 4 (December 2022) . - pp 669 - 678[article]Synergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval / Pedro Aguiar in Remote sensing, vol 14 n° 13 (July-1 2022)
![]()
[article]
Titre : Synergistic use of the SRAL/MWR and SLSTR sensors on board Sentinel-3 for the wet tropospheric correction retrieval Type de document : Article/Communication Auteurs : Pedro Aguiar, Auteur ; Telmo Vieira, Auteur ; Clara Lázaro, Auteur ; M. Joanna Fernandes, Auteur Année de publication : 2022 Article en page(s) : n° 3231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] correction troposphérique
[Termes IGN] image Sentinel-3
[Termes IGN] température de surface de la merRésumé : (auteur) The Sentinel-3 satellites are equipped with dual-band Microwave Radiometers (MWR) to derive the wet tropospheric correction (WTC) for satellite altimetry. The deployed MWR lack the 18 GHz channel, which mainly provides information on the surface emissivity. Currently, this information is considered using additional parameters, one of which is the sea surface temperature (SST) extracted from static seasonal tables. Recent studies show that the use of a dynamic SST extracted from Numerical Weather Models (ERA5) improves the WTC retrieval. Given that Sentinel-3 carries on board the Sea and Land Surface Temperature Radiometer (SLSTR), from which SST observations are derived simultaneously with those of the Synthetic Aperture Radar Altimeter and MWR sensors, this study aims to develop a synergistic approach between these sensors for the WTC retrieval over open ocean. Firstly, the SLSTR-derived SSTs are evaluated against the ERA5 model; secondly, their impact on the WTC retrieval is assessed. The results show that using the SST input from SLSTR, instead of ERA5, has no impact on the WTC retrieval, both globally and regionally. Thus, for the WTC retrieval, there seems to be no advantage in having collocated SST and radiometer observations. Additionally, this study reinforces the fact that the use of dynamic SST leads to a significant improvement over the current Sentinel-3 WTC operational algorithms. Numéro de notice : A2022-571 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs14133231 Date de publication en ligne : 05/07/2022 En ligne : https://doi.org/10.3390/rs14133231 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101287
in Remote sensing > vol 14 n° 13 (July-1 2022) . - n° 3231[article]Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs / Ann E. Gibbs in Remote sensing, vol 13 n° 21 (November-1 2021)
![]()
[article]
Titre : Seven decades of coastal change at Barter Island, Alaska: Exploring the importance of waves and temperature on erosion of coastal permafrost bluffs Type de document : Article/Communication Auteurs : Ann E. Gibbs, Auteur ; Li H. Erikson, Auteur ; Benjamin M. Jones, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 4420 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Alaska (Etats-Unis)
[Termes IGN] analyse diachronique
[Termes IGN] Beaufort, mer de
[Termes IGN] détection de changement
[Termes IGN] données météorologiques
[Termes IGN] ERA5
[Termes IGN] érosion côtière
[Termes IGN] modèle météorologique
[Termes IGN] pergélisol
[Termes IGN] série temporelle
[Termes IGN] température de l'air
[Termes IGN] température de surface de la mer
[Termes IGN] trait de côte
[Termes IGN] vagueRésumé : (auteur) Observational data of coastal change over much of the Arctic are limited largely due to its immensity, remoteness, harsh environment, and restricted periods of sunlight and ice-free conditions. Barter Island, Alaska, is one of the few locations where an extensive, observational dataset exists, which enables a detailed assessment of the trends and patterns of coastal change over decadal to annual time scales. Coastal bluff and shoreline positions were delineated from maps, aerial photographs, and satellite imagery acquired between 1947 and 2020, and at a nearly annual rate since 2004. Rates and patterns of shoreline and bluff change varied widely over the observational period. Shorelines showed a consistent trend of southerly erosion and westerly extension of the western termini of Barter Island and Bernard Spit, which has accelerated since at least 2000. The 3.2 km long stretch of ocean-exposed coastal permafrost bluffs retreated on average 114 m and at a maximum of 163 m at an average long-term rate (70 year) of 1.6 ± 0.1 m/yr. The long-term retreat rate was punctuated by individual years with retreat rates up to four times higher (6.6 ± 1.9 m/yr; 2012–2013) and both long-term (multidecadal) and short-term (annual to semiannual) rates showed a steady increase in retreat rates through time, with consistently high rates since 2015. A best-fit polynomial trend indicated acceleration in retreat rates that was independent of the large spatial and temporal variations observed on an annual basis. Rates and patterns of bluff retreat were correlated to incident wave energy and air and water temperatures. Wave energy was found to be the dominant driver of bluff retreat, followed by sea surface temperatures and warming air temperatures that are considered proxies for evaluating thermo-erosion and denudation. Normalized anomalies of cumulative wave energy, duration of open water, and air and sea temperature showed at least three distinct phases since 1979: a negative phase prior to 1987, a mixed phase between 1987 and the early to late 2000s, followed by a positive phase extending to 2020. The duration of the open-water season has tripled since 1979, increasing from approximately 40 to 140 days. Acceleration in retreat rates at Barter Island may be related to increases in both thermodenudation, associated with increasing air temperature, and the number of niche-forming and block-collapsing episodes associated with higher air and water temperature, more frequent storms, and longer ice-free conditions in the Beaufort Sea. Numéro de notice : A2021-822 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13214420 Date de publication en ligne : 04/11/2021 En ligne : https://doi.org/10.3390/rs13214420 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98936
in Remote sensing > vol 13 n° 21 (November-1 2021) . - n° 4420[article]Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data / Yiwen Zhou in IEEE Transactions on geoscience and remote sensing, vol 59 n° 10 (October 2021)
![]()
[article]
Titre : Seawater Debye model function at L-band and its impact on salinity retrieval from Aquarius satellite data Type de document : Article/Communication Auteurs : Yiwen Zhou, Auteur ; Roger H. Lang, Auteur ; Emmanuel P. Dinnat, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 8103 - 8116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] bande L
[Termes IGN] constante diélectrique
[Termes IGN] eau de mer
[Termes IGN] image SAC-D-Aquarius
[Termes IGN] salinité
[Termes IGN] température de surface de la merRésumé : (auteur) A model function of seawater, which specifies the dielectric constant of seawater as a function of salinity, temperature, and frequency, is important for the retrieval of sea surface salinity using satellite data. In 2017, a model function has been developed based on measurement data at 1.4134 GHz using a third-order polynomial expression in salinity ( S ) and temperature ( T ). Although the model showed improvements in salinity retrieval, it had an inconsistent behavior between partitioned salinities. To improve the stability of the model, new dielectric measurements of seawater have been made recently over a broad range of salinities and temperatures to expand the data set used for developing the model function. The structure of the model function has been changed from a polynomial expansion in S and T to a physics-based model consisting of a Debye molecular resonance term plus a conductivity term. Each unknown parameter is expressed in S and T based on the expanded measurement data set. Physical arguments have been used to limit the number of unknown coefficients in these expressions to improve the stability of the model function. The new model function has been employed in the retrieval algorithm of the Aquarius satellite mission to obtain a global salinity map. The retrieved salinity using a different model function is compared with in situ data collected by Argo floats to evaluate the impact and the performance of model functions. The results indicate that the new model function has significant improvements in salinity retrieval compared with other existing models. Numéro de notice : A2021-767 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3045771 Date de publication en ligne : 14/01/2021 En ligne : https://doi.org/10.1109/TGRS.2020.3045771 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98606
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 10 (October 2021) . - pp 8103 - 8116[article]Comparing the performance of turbulent kinetic energy and K-profile parameterization vertical parameterization schemes over the tropical indian ocean / Lokesh Kumar Pandey in Marine geodesy, vol 44 n° 1 (January 2021)
PermalinkPermalinkSea surface temperature and high water temperature occurrence prediction using a long short-term memory model / Minkyu Kim in Remote sensing, vol 12 n° 21 (November 2020)
PermalinkOn the assimilation of absolute geodetic dynamic topography in a global ocean model: impact on the deep ocean state / Alexey Androsov in Journal of geodesy, vol 93 n° 2 (February 2019)
PermalinkConstruction of Bulk Temperature/Salinity from Surface Temperature and Atlas Profiles for Monitoring Water Volume Variations in the Caspian Sea / Ayoub Moradi (2019)
PermalinkEnhanced MODIS atmospheric total water vapour content trends in response to Arctic amplification / Dunya Alraddawi in Atmosphere, vol 8 n° 12 (December 2017)
PermalinkPermalinkA robust fixed rank kriging method for improving the spatial completeness and accuracy of satellite SST products / Yuxin Zhu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
PermalinkEstimation de la température de surface de la mer par Météosat seconde génération MSG-1 / Abdelkader Labbi in Photo interpretation, European journal of applied remote sensing, vol 51 n° 1 (janvier 2015)
PermalinkGlobal empirical model for mapping zenith wet delays onto precipitable water / Yi Bin Yao in Journal of geodesy, vol 87 n° 5 (May 2013)
Permalink