Descripteur
Termes IGN > foresterie > exploitation forestière
exploitation forestière
Commentaire :
Employé pour :
Aménagement des forêts, Chantier d'exploitation forestière, Économie forestière, Exploitation des ressources forestières, Exploitation forestière, Industrie forestière, Industrie sylvicole. Foresterie. >> Effet de l'exploitation forestière, Exploitant forestier, Ingénieur forestier, Machine forestière, Propriétaire forestier, Scierie, Sylviculture, Travailleur forestier. Voir aussi la subdivision Effets de l'exploitation forestière [+ subd. géogr.] aux êtres vivants, matériaux, parties du corps, produits chimiques et sujets noms communs appropriés (sujets scientifiques et techniques). >>Terme(s) spécifique(s) : Arbre -- Abattage, Balivage, Bois d'industrie, Bois d'œuvre, Déchet d'abattage, Grume, Grume -- Transport, Bois -- Façonnage, Bois -- Tronçonnage, Bois -- Vidange. Equiv. LCSH : Logging, Lumbering. Domaine(s) : 580; 630. Voir aussi |
Documents disponibles dans cette catégorie (144)



Etendre la recherche sur niveau(x) vers le bas
Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions / Johannes Breidenbach in Annals of Forest Science, vol 79 n° 1 (2022)
![]()
[article]
Titre : Harvested area did not increase abruptly-how advancements in satellite-based mapping led to erroneous conclusions Type de document : Article/Communication Auteurs : Johannes Breidenbach, Auteur ; David Ellison, Auteur ; Hans Petersson, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] changement climatique
[Termes IGN] données spatiotemporelles
[Termes IGN] Finlande
[Termes IGN] image à haute résolution
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] précision de l'estimation
[Termes IGN] récolte de bois
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (Auteur) Using satellite-based maps, Ceccherini et al. (Nature 583:72-77, 2020) report abruptly increasing harvested area estimates in several EU countries beginning in 2015. Using more than 120,000 National Forest Inventory observations to analyze the satellite-based map, we show that it is not harvested area but the map’s ability to detect harvested areas that abruptly increases after 2015 in Finland and Sweden. Numéro de notice : A2022-068 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01120-4 Date de publication en ligne : 22/02/2022 En ligne : https://doi.org/10.1186/s13595-022-01120-4 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100013
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 2[article]Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
![]()
[article]
Titre : Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning Type de document : Article/Communication Auteurs : Aboubakar Sani-Mohammed, Auteur ; Wei Yao, Auteur ; Marco Heurich, Auteur Année de publication : 2022 Article en page(s) : n° 100024 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre mort
[Termes IGN] Bavière (Allemagne)
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] gestion forestière durable
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image infrarouge couleur
[Termes IGN] peuplement mélangé
[Termes IGN] puits de carbone
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Mapping standing dead trees, especially, in natural forests is very important for evaluation of the forest's health status, and its capability for storing Carbon, and the conservation of biodiversity. Apparently, natural forests have larger areas which renders the classical field surveying method very challenging, time-consuming, labor-intensive, and unsustainable. Thus, for effective forest management, there is the need for an automated approach that would be cost-effective. With the advent of Machine Learning, Deep Learning has proven to successfully achieve excellent results. This study presents an adjusted Mask R-CNN Deep Learning approach for detecting and segmenting standing dead trees in a mixed dense forest from CIR aerial imagery using a limited (195 images) training dataset. First, transfer learning is considered coupled with the image augmentation technique to leverage the limitation of training datasets. Then, we strategically selected hyperparameters to suit appropriately our model's architecture that fits well with our type of data (dead trees in images). Finally, to assess the generalization capability of our model's performance, a test dataset that was not confronted to the deep neural network was used for comprehensive evaluation. Our model recorded promising results reaching a mean average precision, average recall, and average F1-Score of 0.85, 0.88, and 0.87 respectively, despite our relatively low resolution (20 cm) dataset. Consequently, our model could be used for automation in standing dead tree detection and segmentation for enhanced forest management. This is equally significant for biodiversity conservation, and forest Carbon storage estimation. Numéro de notice : A2022-871 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100024 Date de publication en ligne : 10/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102165
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100024[article]Potentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al. / Guido Ceccherini in Annals of Forest Science, vol 79 n° 1 (2022)
![]()
[article]
Titre : Potentials and limitations of NFIs and remote sensing in the assessment of harvest rates: a reply to Breidenbach et al. Type de document : Article/Communication Auteurs : Guido Ceccherini, Auteur ; Grégory Duveiller, Auteur ; Giacomo Grassi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 31 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse comparative
[Termes IGN] exploitation forestière
[Termes IGN] Finlande
[Termes IGN] foresterie
[Termes IGN] image Landsat
[Termes IGN] inventaire forestier étranger (données)
[Termes IGN] placette d'échantillonnage
[Termes IGN] récolte de bois
[Termes IGN] ressources forestières
[Termes IGN] Suède
[Termes IGN] surface forestière
[Termes IGN] Union EuropéenneRésumé : (auteur) The timely and accurate monitoring of forest resources is becoming of increasing importance in light of the multi-functionality of these ecosystems and their increasing vulnerability to climate change. Remote sensing observations of tree cover and systematic ground observations from National Forest Inventories (NFIs) represent the two major sources of information to assess forest area and use. The specificity of two methods is calling for an in-depth analysis of their strengths and weaknesses and for the design of novel methods emerging from the integration of satellite and surface data. On this specific debate, a recent paper by Breidenbach et al. published in this journal suggests that the detection of a recent increase in EU forest harvest rate—as reported in Nature by Ceccherini et al.—is largely due to technical limitations of satellite-based mapping. The article centers on the difficulty of the approaches to estimate wood harvest based on remote sensing. However, it does not discuss issues with the robustness of validation approaches solely based on NFIs. Here we discuss the use of plot data as a validation set for remote sensing products, discussing potentials and limitations of both NFIs and remote sensing, and how they can be used synergistically. Finally, we highlight the need to collect in situ data that is both relevant and compatible with remote sensing products within the European Union. Numéro de notice : A2022-630 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1186/s13595-022-01150-y Date de publication en ligne : 13/07/2022 En ligne : https://doi.org/10.1186/s13595-022-01150-y Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101393
in Annals of Forest Science > vol 79 n° 1 (2022) . - n° 31[article]Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling / Dario Martín-Benito in Forest ecology and management, vol 524 (November-15 2022)
![]()
[article]
Titre : Development and long-term dynamics of old-growth beech-fir forests in the Pyrenees: Evidence from dendroecology and dynamic vegetation modelling Type de document : Article/Communication Auteurs : Dario Martín-Benito, Auteur ; Juan Alberto Molina-Valero, Auteur ; César Pérez-Cruzado, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 120541 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] Abies alba
[Termes IGN] analyse diachronique
[Termes IGN] biomasse forestière
[Termes IGN] dendroécologie
[Termes IGN] dynamique de la végétation
[Termes IGN] Espagne
[Termes IGN] exploitation forestière
[Termes IGN] Fagus sylvatica
[Termes IGN] forêt ancienne
[Termes IGN] forêt tempérée
[Termes IGN] modèle de croissance végétale
[Termes IGN] ombre
[Termes IGN] perturbation écologique
[Termes IGN] Pyrénées (montagne)
[Vedettes matières IGN] ForesterieRésumé : (auteur) Ecological knowledge on long-term forest dynamics and development has been primarily derived from the study of old-growth forests. Centuries of forest management have decreased the extent of temperate old-growth forests in Europe and altered managed forests. Disentangling the effects of past human disturbances and climate on current species composition is crucial for understanding the long-term development of forests under global change. In this study, we investigated disturbance and recruitment dynamics in two forests in the Western Pyrenees (Spain) with contrasting management history: an old-growth forest and a long-untouched forest, both dominated by the two shade-tolerant species Fagus sylvatica (European beech) and Abies alba (Silver fir). We used dendroecological methods in seven plots to analyse forest structure, growth patterns and disturbance histories in these forests. We benchmarked these data with the dynamic vegetation model ForClim to examine the effects of natural and human-induced disturbances on forest development, structure and species composition. Disturbance regimes differed between the study forests, but none showed evidence of stand replacing disturbances, either natural or human induced. Low disturbance rates and continuous recruitment of beech and fir dominated the old-growth forest over the last 400 years. In contrast, the long-untouched forest was intensively disturbed in 1700–1780, probably by logging, with lower natural disturbance rates thereafter. Beech and fir recruitment preferentially occurred after more intense disturbances, despite the high shade tolerance of both beech and fir. Higher fir abundance in the long-untouched forest than in the old-growth forest appeared to be related to its human-induced disturbances. ForClim closely simulated forest potential natural vegetation with a dominance of beech over fir, but overestimated the presence of less shade-tolerant species. Previously observed local fir decline may result from natural forest successional processes after logging. Within ∼200 years after logging cessation, some long-untouched forest structural attributes converged towards old-growth forest, but legacy effects still affected species composition and structure. Natural disturbance regimes in beech-fir forests of the Western Pyrenees induce temporal fluctuations between beech and fir abundance, with a natural tendency for beech dominance in advanced developmental stages with low disturbance rates. Numéro de notice : A2022-732 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.foreco.2022.120541 Date de publication en ligne : 23/09/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120541 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101695
in Forest ecology and management > vol 524 (November-15 2022) . - n° 120541[article]Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds / Zhilin Tian in IEEE Transactions on geoscience and remote sensing, vol 60 n° 11 (November 2022)
![]()
[article]
Titre : Graph-based leaf–wood separation method for individual trees using terrestrial lidar point clouds Type de document : Article/Communication Auteurs : Zhilin Tian, Auteur ; Shihua Li, Auteur Année de publication : 2022 Article en page(s) : n° 5705111 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] bois
[Termes IGN] branche (arbre)
[Termes IGN] chemin le plus court, algorithme du
[Termes IGN] données lidar
[Termes IGN] échantillonnage de données
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] feuille (végétation)
[Termes IGN] graphe
[Termes IGN] Python (langage de programmation)
[Termes IGN] segmentation
[Termes IGN] semis de pointsRésumé : (auteur) Terrestrial light detection and ranging (lidar) is capable of resolving trees at the branch/leaf level with accurate and dense point clouds. The separation of leaf and wood components is a prerequisite for the estimation of branch/leaf-scale biophysical properties and realistic tree model reconstruction. Most existing methods have been tested on trees with similar structures; their robustness for trees of different species and sizes remains relatively unexplored. This study proposed a new graph-based leaf–wood separation (GBS) method for individual trees purely using the xyz -information of the point cloud. The GBS method fully utilized the shortest path-based features, as the shortest path can effectively reflect the structures for trees of different species and sizes. Ten types of tree data—covering tropical, temperate, and boreal species—with heights ranging from 5.4 to 43.7 m, were used to test the method performance. The mean accuracy and kappa coefficient at the point level were 94% and 0.78, respectively, and our method outperformed two other state-of-the-art methods. Through further analysis and testing, the GBS method exhibited a strong ability for detecting small and leaf-surrounded branches, and was also sufficiently robust in terms of data subsampling. Our research further demonstrated the potential of the shortest path-based features in leaf–wood separation. The entire framework was provided for use as an open-source Python package, along with our labeled validation data. Numéro de notice : A2022-853 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2022.3218603 Date de publication en ligne : 01/11/2022 En ligne : https://doi.org/10.1109/TGRS.2022.3218603 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102099
in IEEE Transactions on geoscience and remote sensing > vol 60 n° 11 (November 2022) . - n° 5705111[article]Assessing logging residues availability for energy production by using forest management plans data and geographic information system (GIS) / Luca Nonini in European Journal of Forest Research, vol 141 n° 5 (October 2022)
PermalinkWood decay detection in Norway spruce forests based on airborne hyperspectral and ALS data / Michele Dalponte in Remote sensing, vol 14 n° 8 (April-2 2022)
PermalinkComparison of neural networks and k-nearest neighbors methods in forest stand variable estimation using airborne laser data / Andras Balazs in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 4 (April 2022)
PermalinkGrowing stock monitoring by European National Forest Inventories: Historical origins, current methods and harmonisation / Thomas Gschwantner in Forest ecology and management, vol 505 (February-1 2022)
PermalinkMonthly mapping of forest harvesting using dense time series Sentinel-1 SAR imagery and deep learning / Feng Zhao in Remote sensing of environment, vol 269 (February 2022)
PermalinkConservation zones increase habitat heterogeneity of certified Mediterranean oak woodlands / Teresa Mexia in Forest ecology and management, vol 504 (January-15 2022)
PermalinkÉléments pour l'analyse et le traitement d'images : application à l'estimation de la qualité du bois / Rémy Decelle (2022)
PermalinkItalian National Forest Inventory: Methods and results of the third survey / Patrizia Gasparini (2022)
PermalinkLe mémento inventaire forestier, édition 2021 / Institut national de l'information géographique et forestière (2012 -) (2022)
![]()
PermalinkEstimating timber volume loss due to storm damage in Carinthia, Austria, using ALS/TLS and spatial regression models / Arne Nothdurft in Forest ecology and management, vol 502 (December-15 2021)
Permalink