Descripteur
Termes IGN > télédétection > télédétection électromagnétique
télédétection électromagnétique |
Documents disponibles dans cette catégorie (1391)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Drought-vulnerable vegetation increases exposure of disadvantaged populations to heatwaves under global warming: A case study from Los Angeles / Chunyu Dong in Sustainable Cities and Society, vol 93 (June 2023)
[article]
Titre : Drought-vulnerable vegetation increases exposure of disadvantaged populations to heatwaves under global warming: A case study from Los Angeles Type de document : Article/Communication Auteurs : Chunyu Dong, Auteur ; Yu Yan, Auteur ; Jie Guo, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104488 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] changement climatique
[Termes IGN] climat urbain
[Termes IGN] données socio-économiques
[Termes IGN] espace vert
[Termes IGN] ilot thermique urbain
[Termes IGN] image Terra-MODIS
[Termes IGN] Los Angeles
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] sécheresse
[Termes IGN] température au solRésumé : (auteur) Urban vegetation is valuable in alleviating local heatwaves. However, drought may decrease vegetation health and limit this cooling effect. Here we use satellite-based Normalized Difference Vegetation Index (NDVI) and Palmer Drought Severity Index (PDSI) to investigate the sensitivity of urban vegetation to drought in Coastal Greater Los Angeles (CGLA) from 2001 to 2020. We applied four statistical models to analyze the relations between 15 socioeconomic variables and the vegetation's sensitivity to drought. We then examined the changes in the cooling effect of the urban vegetation during drought and non-drought periods using remotely sensed land surface temperature (LST) data. The results suggest that economically disadvantaged areas with higher proportions of Hispanics and Blacks are typified by vegetation more sensitive to drought, which is likely linked to inequality in water use. Moreover, these populations experience a lower degree of vegetation cooling effects and higher exposure to heatwaves. The findings of this study imply that the potential of a community's vegetation in mitigating heatwaves is significantly influenced by the socioeconomic conditions of the community. Increasing the resilience of urban vegetation to drought in disadvantaged communities may help promote environmentally sustainable and socially resilient cities under a warming climate. Numéro de notice : A2023-191 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scs.2023.104488 Date de publication en ligne : 26/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104488 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102972
in Sustainable Cities and Society > vol 93 (June 2023) . - n° 104488[article]Diversity and mean specific leaf area of Mediterranean woody vegetation changes in response to summer drought across a double stress gradient: The role of phenotypic plasticity / Alejandro Carrascosa in Journal of vegetation science, vol 34 n° 2 (April 2023)
[article]
Titre : Diversity and mean specific leaf area of Mediterranean woody vegetation changes in response to summer drought across a double stress gradient: The role of phenotypic plasticity Type de document : Article/Communication Auteurs : Alejandro Carrascosa, Auteur ; Mariola Silvestre, Auteur ; Laura Morgado, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° e13180 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] arbuste
[Termes IGN] climat méditerranéen
[Termes IGN] diagnostic foliaire
[Termes IGN] Espagne
[Termes IGN] facteur édaphique
[Termes IGN] indice foliaire
[Termes IGN] plante ligneuse
[Termes IGN] sécheresse
[Termes IGN] stress hydrique
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : Aim: Many aspects of vegetation response to increased drought remain uncertain but it is expected that phenotypic plasticity may be key to early adaptation of plants to environmental stress. In this work we observe the response of specific leaf area (SLA) of woody shrub vegetation to the summer drought typical of the Mediterranean climate. In addition, to observe the possible interaction between the impact of drought and the environmental characteristics of the ecosystems, communities from different edaphic and structural contexts distributed along the double stress gradient of the Mediterranean mountains (high temperature and low precipitation at low elevation; low temperature and high irradiation at high elevation) have been analysed.
Location: Central Mountain range of the Iberian Peninsula.
Methods: Along the entire altitudinal gradient, 33 shrub communities belonging to different habitat typologies (shrublands, rocky areas, hedgerows, understorey) were sampled before and after the passage of summer, both in 2017 and 2019. A total of 1724 individuals and 15,516 leaves were collected and measured to estimate the mean values and diversity of SLA of each community.
Results: The community-weighted mean and functional divergence have inverse quadratic relationships with the environmental gradient. Shrub communities at both ends of the gradient have low mean SLA values and high functional divergence of this trait. Summer drought implies a generalised decrease in the mean SLA of the communities throughout the gradient, as well as an alteration in functional richness and uniformity. However, the effect of summer drought on the plant community is mediated by the microenvironmental characteristics of its habitat.
Conclusions: Drought acclimatisation of shrub communities through phenotypic plasticity leads to rapid changes in their functional leaf structure. In the long term, our results point to an increase in plant conservative strategies, reduced ecosystem productivity, slower nutrient recycling and the reduction of communities of specific habitats as drought increases.Numéro de notice : A2023-223 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1111/jvs.13180 Date de publication en ligne : 09/03/2023 En ligne : https://doi.org/10.1111/jvs.13180 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103172
in Journal of vegetation science > vol 34 n° 2 (April 2023) . - n° e13180[article]Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks / Sina Mohammadi in ISPRS Journal of photogrammetry and remote sensing, vol 198 (April 2023)
[article]
Titre : Improvement in crop mapping from satellite image time series by effectively supervising deep neural networks Type de document : Article/Communication Auteurs : Sina Mohammadi, Auteur ; Mariana Belgiu, Auteur ; Alfred Stein, Auteur Année de publication : 2023 Article en page(s) : pp 272 - 283 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage dirigé
[Termes IGN] apprentissage profond
[Termes IGN] carte de la végétation
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification par réseau neuronal récurrent
[Termes IGN] cultures
[Termes IGN] image Landsat-ETM+
[Termes IGN] image Landsat-OLI
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] série temporelleRésumé : (auteur) Deep learning methods have achieved promising results in crop mapping using satellite image time series. A challenge still remains on how to better learn discriminative feature representations to detect crop types when the model is applied to unseen data. To address this challenge and reveal the importance of proper supervision of deep neural networks in improving performance, we propose to supervise intermediate layers of a designed 3D Fully Convolutional Neural Network (FCN) by employing two middle supervision methods: Cross-entropy loss Middle Supervision (CE-MidS) and a novel middle supervision method, namely Supervised Contrastive loss Middle Supervision (SupCon-MidS). This method pulls together features belonging to the same class in embedding space, while pushing apart features from different classes. We demonstrate that SupCon-MidS enhances feature discrimination and clustering throughout the network, thereby improving the network performance. In addition, we employ two output supervision methods, namely F1 loss and Intersection Over Union (IOU) loss. Our experiments on identifying corn, soybean, and the class Other from Landsat image time series in the U.S. corn belt show that the best set-up of our method, namely IOU+SupCon-MidS, is able to outperform the state-of-the-art methods by
scores of 3.5% and 0.5% on average when testing its accuracy across a different year (local test) and different regions (spatial test), respectively. Further, adding SupCon-MidS to the output supervision methods improves
scores by 1.2% and 7.6% on average in local and spatial tests, respectively. We conclude that proper supervision of deep neural networks plays a significant role in improving crop mapping performance. The code and data are available at: https://github.com/Sina-Mohammadi/CropSupervision.Numéro de notice : A2023-203 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2023.03.007 Date de publication en ligne : 29/03/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2023.03.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103105
in ISPRS Journal of photogrammetry and remote sensing > vol 198 (April 2023) . - pp 272 - 283[article]Validation of Island 3D-mapping based on UAV spatial point cloud optimization: a case study in Dongluo Island of China / Jian Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 89 n° 3 (March 2023)
[article]
Titre : Validation of Island 3D-mapping based on UAV spatial point cloud optimization: a case study in Dongluo Island of China Type de document : Article/Communication Auteurs : Jian Wu, Auteur ; Shifeng Fu, Auteur ; Peng Chen, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 173 - 182 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] cartographie 3D
[Termes IGN] Chine
[Termes IGN] île
[Termes IGN] image captée par drone
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] télédétection aérienneRésumé : (Auteur) The unmanned aerial vehicle (UAV) remote sensing is of small volume, low cost, fine timeliness, and high spatial resolution, and has the special advantage on island surveying. Focus on the inaccurate elevation of non-ground point cloud without lidar device, this study explored a methodology for island three-dimensional (3D) mapping and modelling based on spatial point clouds optimization with a K-Nearest Neighbors Adaptive Inverse Distance Weighted (K-AIDW) interpolation algorithm. By classifying the UAV point clouds into ground, vegatetation, and structure, the K-AIDW algorithm was applied to optimize the elevations of non-ground point clouds (vegetation and structure) to recalculate Z values. The aerophotogrammetry result was generated based on the optimized spatial point clouds. Finally, the 3D model of Dongluo Island was reconstructed and rendered in Metashape. The accuracy evaluation result shows that the max-errors of ground control points (–0.0154 in X, 0.0305 in Y, and 0.0133 in Z) and the checkpoints (–0.091 in X, –0.176 in Y, and 0.338 in Z) can meet the error-tolerance requirements of the corresponding terrain on the 1:500 scale set by the national standard of GB/T 23236-2009 in China. It is found that the K-AIDW algorithm displayed the best Z accuracy (root-mean-square error of 0.2538) compared with IDW (0.3668) and no-optimized (1.6012), proving it is an effective methodology for improving 3D-modelling accuracy of island. Numéro de notice : A2023-172 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00109R2 Date de publication en ligne : 01/03/2023 En ligne : https://doi.org/10.14358/PERS.22-00109R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102923
in Photogrammetric Engineering & Remote Sensing, PERS > vol 89 n° 3 (March 2023) . - pp 173 - 182[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2023031 SL Revue Centre de documentation Revues en salle Disponible Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography / Nathan B. Gonçalves in ISPRS Journal of photogrammetry and remote sensing, vol 196 (February 2023)
[article]
Titre : Amazon forest spectral seasonality is consistent across sensor resolutions and driven by leaf demography Type de document : Article/Communication Auteurs : Nathan B. Gonçalves, Auteur ; Ricardo Dalagnol, Auteur ; Jin Wu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 93 - 104 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] Amazonie
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] forêt tropicale
[Termes IGN] image Landsat-8
[Termes IGN] image Landsat-OLI
[Termes IGN] image proche infrarouge
[Termes IGN] image Terra-MODIS
[Termes IGN] indice de végétation
[Termes IGN] Leaf Area Index
[Termes IGN] réflectance spectrale
[Termes IGN] sécheresse
[Termes IGN] variation saisonnièreRésumé : (Auteur) Controversy surrounds the reported dry season greening of the Central Amazon forests based on the Enhanced Vegetation Index (EVI) from the Moderate Resolution Imaging Spectroradiometer (MODIS). As the solar zenith angle decreases during the dry season, it affects the sub-pixel shade content and artificially increases Near-infrared (NIR) reflectance and EVI. MODIS' coarse resolution also creates a challenge for cloud and terrain filtering. To reduce these artifacts and then validate MODIS seasonal spectral patterns we use 16 years of 1 km resolution MODIS-MAIAC (Multi-Angle Implementation of Atmospheric Correction) images, corrected to a nadir view and 45° solar zenith angle, together with an improved cloud filter. Then we show that the 30 m Landsat-8 Operational Land Imager (OLI) surface reflectance over two Landsat scenes provides independent evidence supporting the MODIS-MAIAC seasonality for EVI, NIR, and GCC (an additional important vegetation index, green chromatic coordinate). Our empirical method for controlling for sun-sensor geometry effects in Landsat scenes encompasses the use of seasonally distinct images that have similar solar zenith angles and cloud-free pixels on flat uplands having the same phase angle. We extended this validation to nine Amazon sub-basins comprising ∼546 Landsat-8 images. Our study shows that the dry-season green-up pattern observed by MODIS is corroborated by Landsat-8, and is independent of satellite data artifacts. To investigate the mechanisms driving these seasonal changes we further used Central Amazon tower-mounted RGB cameras providing a 4-year record at the Amazon Tall Tower (ATTO, 2°8′36″S, 59°0′2″W) and a 7-year record at the Manaus k34 tower (2°36′33″ S, 60°12′33″W) to obtain monthly upper canopy green leaf cover (a proxy for Leaf Area Index - LAI) and monthly leaf age class abundances (based on the age since leaf flushing, by crown). These were compared to seasonal patterns of GCC and EVI in small MODIS-MAIAC windows centered on each tower. MODIS-MAIAC GCC was positively correlated with newly flushed leaves (R2 = 0.76 and 0.44 at ATTO and k34, respectively). EVI correlated strongly with the abundance of mature leaves (R2 = 0.82 and 0.80) but was poorly correlated with LAI (R2 = 0.20 and 0.41, respectively). Therefore, seasonal spectral patterns in the Central Amazon are likely controlled by leaf age variation, not quantity of leaf area. Numéro de notice : A2023-065 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2022.12.001 Date de publication en ligne : 04/01/2023 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.12.001 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102423
in ISPRS Journal of photogrammetry and remote sensing > vol 196 (February 2023) . - pp 93 - 104[article]Decadal assessment of agricultural drought in the context of land use land cover change using MODIS multivariate spectral index time-series data / Thuong V. Tran in GIScience and remote sensing, vol 60 n° 1 (2023)PermalinkHow to optimize the 2D/3D urban thermal environment: Insights derived from UAV LiDAR/multispectral data and multi-source remote sensing data / Rongfang Lyu in Sustainable Cities and Society, vol 88 (January 2023)PermalinkImproving methods to predict aboveground biomass of Pinus sylvestris in urban forest using UFB model, LiDAR and digital hemispherical photography / Ihor Kozak in Urban Forestry & Urban Greening, vol 79 (January 2023)PermalinkRemote sensing techniques for water management and climate change monitoring in drought areas: case studies in Egypt and Tunisia / Lifan Ji in European journal of remote sensing, vol 56 n° 1 (2023)PermalinkInteractive effects of abiotic factors and biotic agents on Scots pine dieback: A multivariate modeling approach in southeast France / Jean Lemaire in Forest ecology and management, vol 526 (December-15 2022)PermalinkEstimating 10-m land surface albedo from Sentinel-2 satellite observations using a direct estimation approach with Google Earth Engine / Xingwen Lin in ISPRS Journal of photogrammetry and remote sensing, vol 194 (December 2022)PermalinkForêt amazonienne : de nouveau sous contrôle ? / Laurent Polidori in Géomètre, n° 2208 (décembre 2022)PermalinkIntegration of geospatial technologies with multiple regression model for urban land use land cover change analysis and its impact on land surface temperature in Jimma City, southwestern Ethiopia / Mitiku Badasa Moisa in Applied geomatics, vol 14 n° 4 (December 2022)PermalinkThe contribution of understorey vegetation to ecosystem evapotranspiration in boreal and temperate forests: a literature review and analysis / Philippe Balandier in European Journal of Forest Research, vol 141 n° 6 (December 2022)PermalinkAn advanced bidirectional reflectance factor (BRF) spectral approach for estimating flavonoid content in leaves of Ginkgo plantations / Kai Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 193 (November 2022)Permalink