Descripteur
Termes descripteurs IGN > sciences naturelles > physique > traitement d'image > transformation de Hough
transformation de Hough |



Etendre la recherche sur niveau(x) vers le bas
Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / R. Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : R. Yazdan, Auteur ; M. Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données d'images
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] corrélation croisée normalisée
[Termes descripteurs IGN] couple stéréoscopique
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] signalisation routière
[Termes descripteurs IGN] SURF (algorithme)
[Termes descripteurs IGN] Téhéran
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis / David Solarna in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Crater detection and registration of planetary images through marked point processes, multiscale decomposition, and region-based analysis Type de document : Article/Communication Auteurs : David Solarna, Auteur ; Alberto Gotelli, Auteur ; Jacqueline Le Moigne, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6039 - 6058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] cratère
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] distance de Hausdorff
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] Mars (planète)
[Termes descripteurs IGN] ondelette
[Termes descripteurs IGN] processus ponctuel marqué
[Termes descripteurs IGN] séparateur à vaste marge
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] zone d'intérêtRésumé : (auteur) Because of the large variety of planetary sensors and spacecraft already collecting data and with many new and improved sensors being planned for future missions, planetary science needs to integrate numerous multimodal image sources, and, as a consequence, accurate and robust registration algorithms are required. In this article, we develop a new framework for crater detection based on marked point processes (MPPs) that can be used for planetary image registration. MPPs were found to be effective for various object detection tasks in Earth observation, and a new MPP model is proposed here for detecting craters in planetary data. The resulting spatial features are exploited for registration, together with fitness functions based on the MPP energy, on the mean directed Hausdorff distance, and on the mutual information. Two different methods—one based on birth–death processes and region-of-interest analysis and the other based on graph cuts and decimated wavelets—are developed within the proposed framework. Experiments with a large set of images, including 13 thermal infrared and visible images of the Mars surface, 20 semisimulated multitemporal pairs of images of the Mars surface, and a real multitemporal image pair of the Lunar surface, demonstrate the effectiveness of the proposed framework in terms of crater detection performance as well as for subpixel registration accuracy. Numéro de notice : A2020-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2970908 date de publication en ligne : 18/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2970908 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95704
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6039 - 6058[article]Planar polygons detection in lidar scans based on sensor topology enhanced Ransac / Stéphane Guinard in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, V-2 (August 2020)
![]()
[article]
Titre : Planar polygons detection in lidar scans based on sensor topology enhanced Ransac Type de document : Article/Communication Auteurs : Stéphane Guinard , Auteur ; Zoumana Mallé, Auteur ; Oussama Ennafii
, Auteur ; Pascal Monasse, Auteur ; Bruno Vallet
, Auteur
Année de publication : 2020 Projets : Biom / Vallet, Bruno Conférence : ISPRS 2020, Commission 2, virtual Congress, Imaging today foreseeing tomorrow 31/08/2020 02/09/2020 Nice (en ligne) France Annals Commission 2 Article en page(s) : pp 343 - 350 Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] polygone
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] segmentation par croissance de régions
[Termes descripteurs IGN] topologie capteur
[Termes descripteurs IGN] traitement de nuage de points
[Termes descripteurs IGN] transformation de HoughRésumé : (auteur) Detecting planar structures in point clouds is a very central step of the point cloud processing pipeline as many Lidar scans, in particular in anthropic environments, present such planar structures. Many improvements have been proposed to RANSAC and the Hough transform, the two major types of plane detection methods. An important limitation however is that these methods detect planes running across the whole scene instead of more localized planar patches. Moreover, they do not exploit the sensor information that often comes with Lidar point cloud (sensor topology and optical center position in particular). In this paper we address both issues: we aim at detecting planar polygons that have a limited spatial extent, and we exploit sensor topology. The latter is used to enhance a RANSAC framework on two aspects: to make seed points selection more local and to define more compact sets of inliers through sensor space region growing. Numéro de notice : A2020-502 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.5194/isprs-annals-V-2-2020-343-2020 date de publication en ligne : 03/08/2020 En ligne : https://doi.org/10.5194/isprs-annals-V-2-2020-343-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95643
in ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences > V-2 (August 2020) . - pp 343 - 350[article]A point cloud feature regularization method by fusing judge criterion of field force / Xijiang Chen in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : A point cloud feature regularization method by fusing judge criterion of field force Type de document : Article/Communication Auteurs : Xijiang Chen, Auteur ; Qing Liu, Auteur ; Kegen Yu, Auteur Année de publication : 2020 Article en page(s) : pp 2994 - 3006 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse vectorielle
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] niveau de gris (image)
[Termes descripteurs IGN] partitionnement binaire
[Termes descripteurs IGN] plus proche voisin (algorithme)
[Termes descripteurs IGN] reconstruction d'objet
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] spline cubique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] Wuhan (Chine)Résumé : (auteur) Point cloud boundary is an important part of the surface model. The traditional feature extraction method has slow speed and low efficiency and only achieves the boundary feature points. Hence, the point cloud feature regularization is proposed to obtain the boundary lines based on the fast extraction of feature points in this article. First, an improved $k$ - $d$ tree method is used to search the $k$ neighbors of sampling point. Then, the sampling point and its $k$ neighbors are used as the reference points set to fit a microcut plane and project to the plane. The local coordinate system is established on the microcut plane to convert 3-D into 2-D. The boundary feature points are identified by judging criterion of field force and then are sorted and connected according to the vector deflected angle and distance. Finally, the boundary lines are smoothed by the improved cubic B-spline fitting method. Experiments show that the proposed method can extract the boundary feature points quickly and efficiently, and the mean error of boundary lines is 0.0674 mm and the standard deviation is 0.0346 mm, which has high precision. This proposed method was also successfully applied to feature extraction and boundary fitting of Xinyi teaching building of the Wuhan University of Technology. Numéro de notice : A2020-230 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946326 date de publication en ligne : 16/12/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2946326 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94968
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 2994 - 3006[article]Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference / Heidar Rastiveis in ISPRS Journal of photogrammetry and remote sensing, vol 160 (February 2020)
![]()
[article]
Titre : Automated extraction of lane markings from mobile LiDAR point clouds based on fuzzy inference Type de document : Article/Communication Auteurs : Heidar Rastiveis, Auteur ; Alireza Shams, Auteur ; Wayne A. Sarasua, Auteur ; Jonathan Li, Auteur Année de publication : 2020 Article en page(s) : pp 149 - 166 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] autoroute
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] extraction de points
[Termes descripteurs IGN] extraction du réseau routier
[Termes descripteurs IGN] Inférence floue
[Termes descripteurs IGN] lidar mobile
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] transformation de HoughRésumé : (Auteur) Mobile LiDAR systems (MLS) are rapid and accurate technologies for acquiring three-dimensional (3D) point clouds that can be used to generate 3D models of road environments. Because manual extraction of desirable features such as road traffic signs, trees, and pavement markings from these point clouds is tedious and time-consuming, automatic information extraction of these objects is desirable. This paper proposes a novel automatic method to extract pavement lane markings (LMs) using point attributes associated with the MLS point cloud based on fuzzy inference. The proposed method begins with dividing the MLS point cloud into a number of small sections (e.g. tiles) along the route. After initial filtering of non-ground points, each section is vertically aligned. Next, a number of candidate LM areas are detected using a Hough Transform (HT) algorithm and considering a buffer area around each line. The points inside each area are divided into “probable-LM” and “non-LM” clusters. After extracting geometric and radiometric descriptors for the “probable-LM” clusters and analyzing them in a fuzzy inference system, true-LM clusters are eventually detected. Finally, the extracted points are enhanced and transformed back to their original position. The efficiency of the method was tested on two different point cloud datasets along 15.6 km and 9.5 km roadway corridors. Comparing the LMs extracted using the algorithm with the manually extracted LMs, 88% of the LM lines were successfully extracted in both datasets. Numéro de notice : A2020-047 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.12.009 date de publication en ligne : 20/12/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.12.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94558
in ISPRS Journal of photogrammetry and remote sensing > vol 160 (February 2020) . - pp 149 - 166[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020021 SL Revue Centre de documentation Revues en salle Disponible 081-2020023 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020022 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Comparison of three algorithms to estimate tree stem diameter from terrestrial laser scanner data / Joris Ravaglia in Forests, vol 10 n° 7 (July 2019)
PermalinkMise en place d’un processus de dessin automatisé de plans d’intérieurs à partir de nuages de points acquis par LIDAR / Léa Talec (2017)
PermalinkGeometrical consistency voting strategy for outlier detection in image matching / Luping Lu in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 7 (juillet 2016)
PermalinkA multi-scale plane-detection method based on the Hough transform and region growing / Xiaoxu Leng in Photogrammetric record, vol 31 n° 154 (June - August 2016)
PermalinkRotation-and-scale-invariant airplane detection in high-resolution satellite images based on deep-Hough-forests / Yongtao Yu in ISPRS Journal of photogrammetry and remote sensing, vol 112 (February 2016)
PermalinkAutomatic 3D modelling of metal frame connections from LiDAR data for structural engineering purposes / M. Cabaleiro in ISPRS Journal of photogrammetry and remote sensing, vol 96 (October 2014)
PermalinkReconstruct street network from imprecise excavation data using fuzzy Hough transforms / Cyril de Runz in Geoinformatica, vol 18 n° 2 (April 2014)
PermalinkA new method for automatic large scale map updating using mobile mapping imagery / Jianliang Ou in Photogrammetric record, vol 28 n° 143 (September - November 2013)
PermalinkA multi-resolution hybrid approach for building model reconstruction from lidar data / M. Satari in Photogrammetric record, vol 27 n° 139 (September - November 2012)
PermalinkTree topology representation from TLS point clouds using depth-first search in voxel space / A. Schilling in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 4 (April 2012)
Permalink