Descripteur
Termes IGN > sciences naturelles > physique > mécanique > trajectographie (positionnement) > trajectoire (véhicule non spatial)
trajectoire (véhicule non spatial)Voir aussi |
Documents disponibles dans cette catégorie (51)



Etendre la recherche sur niveau(x) vers le bas
Raw GIS to 3D road modeling for real-time traffic simulation / Yacine Amara in The Visual Computer, vol 38 n° 1 (January 2022)
![]()
[article]
Titre : Raw GIS to 3D road modeling for real-time traffic simulation Type de document : Article/Communication Auteurs : Yacine Amara, Auteur ; Abdenour Amamra, Auteur ; Salim Khemis, Auteur Année de publication : 2022 Article en page(s) : pp 239 - 256 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] comportement
[Termes IGN] graphe topologique
[Termes IGN] intersection spatiale
[Termes IGN] modèle de simulation
[Termes IGN] modélisation 3D
[Termes IGN] navigation virtuelle
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographique
[Termes IGN] système multi-agents
[Termes IGN] temps réel
[Termes IGN] trafic routier
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) In this work, we propose a new approach to road modeling and 3D traffic simulation. Based on the raw geographic information system (GIS) data laid out as sparse polylines with attributes, we compute a more adequate functional description for real-time simulation of on-road vehicle animation. The proposed approach begins with a filtering/subdivision module where the raw polylines are transformed into a graph of functional road segments as arcs and the nodes as intersections. Then, the vehicle speed profile is computed based on its dynamics, its neighborhood and the curvature profile of the road. Afterward, a multi-agent system is proposed in order to handle a large number of simulated vehicle/driver couples. Finally, we deploy a 3D rendering engine to display the computed 3D simulation on screen. The resulting model satisfies most of the real road features for traffic simulation including road interchanges, roundabouts, intersections, lanes, etc. More importantly, the simulated driving qualitatively mimics the real behavior of the drivers/vehicles on the road as can be seen in the accompanying video (RTSP video). We also validate our findings with a technical assessment based on macroscopic and microscopic traffic simulation metrics in several road traffic scenarios. Numéro de notice : A2022-160 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1007/s00371-020-02013-1 Date de publication en ligne : 01/01/2022 En ligne : https://doi.org/10.1007/s00371-020-02013-1 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99777
in The Visual Computer > vol 38 n° 1 (January 2022) . - pp 239 - 256[article]Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands / Karel Kuželka in ISPRS Journal of photogrammetry and remote sensing, vol 178 (August 2021)
![]()
[article]
Titre : Mathematically optimized trajectory for terrestrial close-range photogrammetric 3D reconstruction of forest stands Type de document : Article/Communication Auteurs : Karel Kuželka, Auteur ; Peter Surový, Auteur Année de publication : 2021 Article en page(s) : pp 259 - 281 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie terrestre
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] diamètre à hauteur de poitrine
[Termes IGN] inventaire forestier (techniques et méthodes)
[Termes IGN] optimisation (mathématiques)
[Termes IGN] peuplement forestier
[Termes IGN] problème du voyageur de commerce
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] structure-from-motion
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) Terrestrial close-range photogrammetry offers a low-cost method of three-dimensional (3D) reconstruction of forest stands that provides automatically processable 3D data that can be used to evaluate inventory parameters of forest stands and individual trees. However, fundamental methodological problems in image acquisition and processing remain. This study enhances the methodology of photogrammetric Structure from Motion reconstruction of forest stands by determining the best photographer's trajectory for image acquisition. The study comprises 1) mathematical optimization of the route in a square grid using integer programming, 2) evaluation of point clouds derived from sequences of real photographs, simulating different trajectories, and 3) verification on real trajectories. In a forest research plot, we established a 1 m square grid of 625 (i.e., 25 × 25) photographic positions, and at each position, we captured 16 photographs in uniformly spaced directions. We adopted real tree positions and diameters, and the coordinates of the photographic positions, including orientation angles of captured images, were recorded. We then formulated an integer programming optimization model to find the most efficient trajectory that provided coverage of all sides of all trees with sufficient counts of images. Subsequently, we used the 10,000 captured images to produce image subsets simulating image sequences acquired during the photographer's movement along 84 different systematic trajectories of seven patterns based on either parallel lines or concentric orbits. 3D point clouds derived from the simulated image sequences were evaluated for their suitability for automatic tree detection and estimation of diameters at breast height. The results of the integer programming model indicated that the optimal trajectory consisted of parallel line segments if the camera is pointed forward – in the travel direction, or concentric orbits if the camera is pointed to a side – perpendicular to the travel direction. With point clouds derived from the images of the simulated trajectories, the best diameter estimates on automatically detected trees were achieved with trajectories consisting of parallel lines in two perpendicular directions where each line was passed in both opposite directions. For efficient image acquisition, resulting in point clouds of reasonable quality with low counts of images, a trajectory consisting of concentric orbits, including the plot perimeter with the camera pointed towards the plot center, proved to be the best. Results of simulated trajectories were verified with the photogrammetric reconstruction of the forest stand based on real trajectories for six patterns. The mathematical optimization was consistent with the results of the experiment, which indicated that mathematical optimization may represent a valid tool for planning trajectories for photogrammetric 3D reconstruction of scenes in general. Numéro de notice : A2021-562 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.06.013 Date de publication en ligne : 02/07/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.06.013 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98122
in ISPRS Journal of photogrammetry and remote sensing > vol 178 (August 2021) . - pp 259 - 281[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021081 SL Revue Centre de documentation Revues en salle Disponible 081-2021083 DEP-RECP Revue LaSTIG Dépôt en unité Exclu du prêt 081-2021082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Geographical and temporal huff model calibration using taxi trajectory data / Shuhui Gong in Geoinformatica [en ligne], vol 25 n° 3 (July 2021)
![]()
[article]
Titre : Geographical and temporal huff model calibration using taxi trajectory data Type de document : Article/Communication Auteurs : Shuhui Gong, Auteur ; John Cartlidge, Auteur ; Ruibin Bai, Auteur ; Yang Yue, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 485 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] attractivité (aménagement)
[Termes IGN] étalonnage de modèle
[Termes IGN] New York (Etats-Unis ; ville)
[Termes IGN] régression des moindres carrés partiels
[Termes IGN] régression géographiquement pondérée
[Termes IGN] Shenzhen
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The Huff model is designed to estimate the probability of shopping centre patronage based on a shopping centre’s attractiveness and the cost of a customer’s travel. In this paper, we attempt to discover some general shopping trends by calibrating the Huff model in Shenzhen, China, and New York, USA, using taxi trajectory GPS data and sharing bikes GPS data. Geographical and Temporal Weighted Regression (GTWR) is used to fit the model, and calibration results are compared with Ordinary Least Squares (OLS) regression, Geographical Weighted Regression (GWR), and Temporal Weighted Regression (TWR). Results show that GTWR gives the highest performance due to significant geographical and temporal variation in the Huff model parameters of attractiveness and travel cost. To explain the geographical variation, we use residential sales’ and rental prices in Shenzhen and New York as a proxy for customers’ wealth in each region. Pearson product-moment correlation results show a medium relationship between localised sales’ and rental prices and the Huff model parameter of attractiveness: that is, customer wealth explains geographic sensitivity to shopping area attractiveness. To explain temporal variation, we use census data in both Shenzhen and New York to provide job profile distributions for each region as a proxy to estimate customers’ spare leisure time. Regression results demonstrate that there is a significant linear relationship between the length of spare time and the parameter of shopping area attractiveness. In particular, we demonstrate that wealthy customers with less spare time are more sensitive to a shopping centre’s attractiveness. We also discover customers’ sensitivities to travel distance are related to their travel mode. In particular, people riding bikes to shopping areas care much more about trip distance compared with people who take taxi. Finally, results show a divergence in behaviours between customers in New York and Shenzhen at weekends. While customers in New York prefer to shop more locally at weekends, customers in Shenzhen care less about trip distance. We provide the GTWR calibration of the Huff model as our theoretical contribution. GTWR extends the Huff model to two dimensions (time and space), so as to analyse the differences of residents’ travel behaviours in different time and locations. We also provide the discoveries of factors affecting urban travel behaviours (wealth and employment) as practical contributions that may help optimise urban transportation design. In particular, the sensitivity of residents to the attraction of shopping areas has a significant positive linear relationship with the housing price and a significant negative linear relationship with the residents’ length of spare time. Numéro de notice : A2021-973 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1007/s10707-019-00390-x Date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1007/s10707-019-00390-x Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100392
in Geoinformatica [en ligne] > vol 25 n° 3 (July 2021) . - pp 485 - 512[article]Mapping trajectories and flows: facilitating a human-centered approach to movement data analytics / Somayeh Dodge in Cartography and Geographic Information Science, vol 48 n° 4 (July 2021)
![]()
[article]
Titre : Mapping trajectories and flows: facilitating a human-centered approach to movement data analytics Type de document : Article/Communication Auteurs : Somayeh Dodge, Auteur ; Evgeny Noi, Auteur Année de publication : 2021 Article en page(s) : pp 353 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse visuelle
[Termes IGN] données de flux
[Termes IGN] interaction humain-espace
[Termes IGN] origine - destination
[Termes IGN] trajectoire (véhicule non spatial)
[Termes IGN] trajet (mobilité)
[Termes IGN] visualisation cartographique
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) This paper argues for a “human-centered” approach to knowledge discovery from movement data through the use of visualization and mapping. As movement data becomes more available and diverse in dimension and resolution, mapping becomes particularly important in the exploratory analysis of movement trajectories and for capturing patterns and structures in large origin-destination flow data sets. Movement phenomena (e.g. ranging from micro-movements of humans and animals to macro-level mobility, to migration flows, to spread of viruses) are complex dynamic processes which are realized in a multidimensional location-time-context space. This paper provides a comprehensive overview of various visualization techniques for mapping movement through the lens of cartography and with a special focus on the “human user” (e.g. data scientist, analyst, domain expert, etc.). We systematically characterize and categorize available techniques based on their visual specifications and functional capacities for human control, map-interaction, and design flexibility. These elements are beneficial to enhance the user’s capacities for map reasoning and knowledge discovery. Trends and gaps in the literature on movement visualization over the past 10 years are discussed. Our review suggests that future research should focus more on the role of the “human” in the development of human-centered visual analytic and exploratory tools, while providing functionalities for mapping uncertainty and protecting individual privacy in knowledge discovery of movement. These tools should be guided by a cartographic framework and visual principles specifically pertinent to movement. Numéro de notice : A2021-446 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1913763 Date de publication en ligne : 21/05/2021 En ligne : https://doi.org/10.1080/15230406.2021.1913763 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97853
in Cartography and Geographic Information Science > vol 48 n° 4 (July 2021) . - pp 353 - 375[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021041 SL Revue Centre de documentation Revues en salle Disponible A scalable method to construct compact road networks from GPS trajectories / Yuejun Guo in International journal of geographical information science IJGIS, vol 35 n° 7 (July 2021)
![]()
[article]
Titre : A scalable method to construct compact road networks from GPS trajectories Type de document : Article/Communication Auteurs : Yuejun Guo, Auteur ; Anton Bardera, Auteur ; Marta Fort, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1309 - 1345 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] chevauchement
[Termes IGN] compensation par faisceaux
[Termes IGN] contour
[Termes IGN] généralisation automatique de données
[Termes IGN] méthode heuristique
[Termes IGN] noeud
[Termes IGN] réseau routier
[Termes IGN] segmentation par décomposition-fusion
[Termes IGN] squelettisation
[Termes IGN] trajectographie par GPS
[Termes IGN] trajectoire (véhicule non spatial)Résumé : (auteur) The automatic generation of road networks from GPS tracks is a challenging problem that has been receiving considerable attention in the last years. Although dozens of methods have been proposed, current techniques suffer from two main shortcomings: the quality of the produced road networks is still far from those produced manually, and the methods are slow, making them not scalable to large inputs. In this paper, we present a fast four-step density-based approach to construct a road network from a set of trajectories. A key aspect of our method is the use of an improved version of the Slide method to adjust trajectories to build a more compact density surface. The network has comparable or better quality than that of state-of-the-art methods and is simpler (includes fewer nodes and edges). Furthermore, we also propose a split-and-merge strategy that allows splitting the data domain into smaller regions that can be processed independently, making the method scalable to large inputs. The performance of our method is evaluated with extensive experiments on urban and hiking data. Numéro de notice : A2021-447 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1832229 Date de publication en ligne : 16/10/2020 En ligne : https://doi.org/10.1080/13658816.2020.1832229 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97859
in International journal of geographical information science IJGIS > vol 35 n° 7 (July 2021) . - pp 1309 - 1345[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2021071 SL Revue Centre de documentation Revues en salle Disponible Trajectory and image-based detection and identification of UAV / Yicheng Liu in The Visual Computer, vol 37 n° 7 (July 2021)
PermalinkA trajectory restoration algorithm for low-sampling-rate floating car data and complex urban road networks / Bozhao Li in International journal of geographical information science IJGIS, vol 35 n° 4 (April 2021)
PermalinkEnhanced trajectory estimation of mobile laser scanners using aerial images / Zille Hussnain in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
PermalinkLearning from GPS trajectories of floating car for CNN-based urban road extraction with high-resolution satellite imagery / Ju Zhang in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
PermalinkUnsupervised deep representation learning for real-time tracking / Ning Wang in International journal of computer vision, vol 129 n° 2 (February 2021)
PermalinkSemantic trajectory segmentation based on change-point detection and ontology / Yuan Gao in International journal of geographical information science IJGIS, vol 34 n° 12 (December 2020)
PermalinkNetwork-constrained bivariate clustering method for detecting urban black holes and volcanoes / Qiliang Liu in International journal of geographical information science IJGIS, vol 34 n° 10 (October 2020)
PermalinkImproving GNSS-acoustic positioning by optimizing the ship’s track lines and observation combinations / Guanxu Chen in Journal of geodesy, vol 94 n° 6 (June 2020)
PermalinkImproved kinematic precise point positioning performance with the use of map constraints / Emerson Pereira Cavalheri in Journal of applied geodesy, vol 14 n° 2 (April 2020)
PermalinkPostprocessing synchronization of a laser scanning system aboard a UAV / Marcela do Valle Machado in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 10 (October 2019)
Permalink