Descripteur
Documents disponibles dans cette catégorie (33)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Sensing urban soundscapes from street view imagery / Tianhong Zhao in Computers, Environment and Urban Systems, vol 99 (January 2023)
[article]
Titre : Sensing urban soundscapes from street view imagery Type de document : Article/Communication Auteurs : Tianhong Zhao, Auteur ; Xiucheng Liang, Auteur ; Wei Tu, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101915 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] apprentissage profond
[Termes IGN] bruit (audition)
[Termes IGN] distribution spatiale
[Termes IGN] image Streetview
[Termes IGN] paysage sonore
[Termes IGN] planification urbaine
[Termes IGN] pollution acoustique
[Termes IGN] Shenzhen
[Termes IGN] Singapour
[Termes IGN] ville durable
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) A healthy acoustic environment is an essential component of sustainable cities. Various noise monitoring and simulation techniques have been developed to measure and evaluate urban sounds. However, sensing large areas at a fine resolution remains a great challenge. Based on machine learning, we introduce a new application of street view imagery — estimating large-area high-resolution urban soundscapes, investigating the premise that we can predict and characterize soundscapes without laborious and expensive noise measurements. First, visual features are extracted from street-level imagery using computer vision. Second, fifteen soundscape indicators are identified and a survey is conducted to gauge them solely from images. Finally, a prediction model is constructed to infer the urban soundscape by modeling the non-linear relationship between them. The results are verified with extensive field surveys. Experiments conducted in Singapore and Shenzhen using half a million images affirm that street view imagery enables us to sense large-scale urban soundscapes with low cost but high accuracy and detail, and provides an alternative means to generate soundscape maps. reaches 0.48 by evaluating the predicted results with field data collection. Further novelties in this domain are revealing the contributing visual elements and spatial laws of soundscapes, underscoring the usability of crowdsourced data, and exposing international patterns in perception. Numéro de notice : A2023-014 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101915 Date de publication en ligne : 20/11/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102131
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101915[article]Prioritizing urban water scarcity mitigation strategies based on hybrid multi-criteria decision approach under fuzzy environment / Ömer Ekmekcioğlu in Sustainable Cities and Society, vol 87 (December 2022)
[article]
Titre : Prioritizing urban water scarcity mitigation strategies based on hybrid multi-criteria decision approach under fuzzy environment Type de document : Article/Communication Auteurs : Ömer Ekmekcioğlu, Auteur ; Kerim Koc, Auteur ; Ismail Dabanli, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104195 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] analyse multicritère
[Termes IGN] changement climatique
[Termes IGN] eau
[Termes IGN] milieu urbain
[Termes IGN] planification urbaine
[Termes IGN] pondération
[Termes IGN] processus de hiérarchisation analytique floue
[Termes IGN] résilience écologique
[Termes IGN] ressources en eau
[Termes IGN] utilisation du sol
[Termes IGN] ville durableRésumé : (auteur) This study was undertaken to be a remedy to urban water scarcity phenomena having escalated consequences with the contemporaneous effects of climate change and over-urbanization. Hence, a broad list of mitigation strategies comprising 44 action plans under seven dimensions was assessed depending upon five constraints (i.e., cost-effectiveness, time/effort required, feasibility, primary benefit, and secondary benefits). To realize the overarching aim of this research, the analytical hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) each subjected to the fuzzy set theory were employed. In this regard, the fuzzy AHP was utilized for determining the weights of constraining criteria, while the prioritization of the strategies was performed via the fuzzy TOPSIS. The results revealed that the primary benefit is the most prevailing criterion compared to its counterparts. In addition, procuring organized land use planning and limiting new growth in urban areas was found as the most promising strategy to combat urban water scarcity phenomena. The findings further highlighted the effectiveness of conducting integrated water resource planning against climate change and fostering the use of sustainable materials domestically in not only mitigating urban water scarcity but also increasing the resiliency and sustainability of the urbanized cities. Numéro de notice : A2022-818 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104195 Date de publication en ligne : 21/09/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101985
in Sustainable Cities and Society > vol 87 (December 2022) . - n° 104195[article]Machine learning for spatial analyses in urban areas: a scoping review / Ylenia Casali in Sustainable Cities and Society, vol 85 (October 2022)
[article]
Titre : Machine learning for spatial analyses in urban areas: a scoping review Type de document : Article/Communication Auteurs : Ylenia Casali, Auteur ; Nazli Yonca Aydin, Auteur ; Tina Comes, Auteur Année de publication : 2022 Article en page(s) : n° 104050 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] algorithme d'apprentissage
[Termes IGN] analyse spatio-temporelle
[Termes IGN] apprentissage automatique
[Termes IGN] distribution spatiale
[Termes IGN] espace urbain
[Termes IGN] littérature
[Termes IGN] source de données
[Termes IGN] urbanisme
[Termes IGN] ville durable
[Termes IGN] zone urbaineRésumé : (auteur) The challenges for sustainable cities to protect the environment, ensure economic growth, and maintain social justice have been widely recognized. Along with the digitization, availability of large datasets, Machine Learning (ML) and Artificial Intelligence (AI) are promising to revolutionize the way we analyze and plan urban areas, opening new opportunities for the sustainable city agenda. Especially urban spatial planning problems can benefit from ML approaches, leading to an increasing number of ML publications across different domains. What is missing is an overview of the most prominent domains in spatial urban ML along with a mapping of specific applied approaches. This paper aims to address this gap and guide researchers in the field of urban science and spatial data analysis to the most used methods and unexplored research gaps. We present a scoping review of ML studies that used geospatial data to analyze urban areas. Our review focuses on revealing the most prominent topics, data sources, ML methods and approaches to parameter selection. Furthermore, we determine the most prominent patterns and challenges in the use of ML. Through our analysis, we identify knowledge gaps in ML methods for spatial data science and data specifications to guide future research. Numéro de notice : A2022-765 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1016/j.scs.2022.104050 Date de publication en ligne : 12/07/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104050 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101786
in Sustainable Cities and Society > vol 85 (October 2022) . - n° 104050[article]Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques / Wang Yue in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 9 (September 2022)
[article]
Titre : Deep learning–based monitoring sustainable decision support system for energy building to smart cities with remote sensing techniques Type de document : Article/Communication Auteurs : Wang Yue, Auteur ; Changgang Yu, Auteur ; A. Antonidoss, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 593 - 601 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] apprentissage profond
[Termes IGN] bâtiment
[Termes IGN] capteur (télédétection)
[Termes IGN] économie d'énergie
[Termes IGN] internet des objets
[Termes IGN] performance énergétique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] système d'aide à la décision
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) In modern society, energy conservation is an important consideration for sustainability. The availability of energy-efficient infrastructures and utilities depend on the sustainability of smart cities. The big streaming data generated and collected by smart building devices and systems contain useful information that needs to be used to make timely action and better decisions. The ultimate objective of these procedures is to enhance the city's sustainability and livability. The replacement of decades-old infrastructures, such as underground wiring, steam pipes, transportation tunnels, and high-speed Internet installation, is already a major problem for major urban regions. There are still certain regions in big cities where broadband wireless service is not available. The decision support system is recently acquiring increasing attention in the smart city context. In this article, a deep learning–based sustainable decision support system (DLSDSS) has been proposed for energy building in smart cities. This study proposes the integration of the Internet of Things into smart buildings for energy management, utilizing deep learning methods for sensor information decision making. Building a socially advanced environment aims to enhance city services and urban administration for residents in smart cities using remote sensing techniques. The proposed deep learning methods classify buildings based on energy efficiency. Data gathered from the sensor network to plan smart cities' development include a deep learning algorithm's structural assembly of data. The deep learning algorithm provides decision makers with a model for the big data stream. The numerical results show that the proposed method reduces energy consumption and enhances sensor data accuracy by 97.67% with better decision making in planning smart infrastructures and services. The experimental outcome of the DLSDSS enhances accuracy (97.67%), time complexity (98.7%), data distribution rate (97.1%), energy consumption rate (98.2%), load shedding ratio (95.8%), and energy efficiency (95.4%). Numéro de notice : A2022-812 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00010R2 Date de publication en ligne : 01/09/2022 En ligne : https://doi.org/10.14358/PERS.22-00010R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101972
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 9 (September 2022) . - pp 593 - 601[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022091 SL Revue Centre de documentation Revues en salle Disponible Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration / Haishan Xia in Sustainable Cities and Society, vol 84 (September 2022)
[article]
Titre : Study on city digital twin technologies for sustainable smart city design: A review and bibliometric analysis of geographic information system and building information modeling integration Type de document : Article/Communication Auteurs : Haishan Xia, Auteur ; Zishuo Liu, Auteur ; Maria Efremochkina, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104009 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] bibliométrie
[Termes IGN] CityGML
[Termes IGN] format Industry foudation classes IFC
[Termes IGN] intégration de données
[Termes IGN] jumeau numérique
[Termes IGN] modélisation 3D du bâti BIM
[Termes IGN] ontologie
[Termes IGN] planification urbaine
[Termes IGN] système d'information géographique
[Termes IGN] ville durable
[Termes IGN] ville intelligenteRésumé : (auteur) Geographic information system (GIS) data provide geospatial data on cities and spatial analysis functions that are essential for urban design. Building information modeling (BIM) includes a digital entity of construction, a passive presentation of micro-digital information on real entities, and an active application of models in the entire life cycle realization of the architecture, engineering, and construction industries. A combination of these technologies could provide a core technology for the urban digital twin to support sustainable smart city design. Through an insightful literature review, this paper summarizes the different disciplinary classifications of GIS and BIM functional integration, distills the value of data, and discusses the ontology-based data integration approach that GIS and BIM should take in the future to conduct research on integration applications in smart cities. To verify this view, keyword analysis, co-country analysis, and co-citation and coupling analyses are conducted using CiteSpace. GIS and BIM integration has attracted much attention. However, a professional disconnect and fragmented composition pose challenges in the field of GIS and BIM integration. Future research should focus on smart city planning, updating, management; ontology-based GIS and BIM data integration platform; and operation; and the collaborative management of urban rail transportation engineering. Numéro de notice : A2022-543 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2022.104009 Date de publication en ligne : 18/06/2022 En ligne : https://doi.org/10.1016/j.scs.2022.104009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101118
in Sustainable Cities and Society > vol 84 (September 2022) . - n° 104009[article]Trade-offs between sustainable development goals in systems of cities / Juste Raimbault in Journal of Urban Management, vol 11 n° 2 (June 2022)PermalinkDeveloping a data-fusing method for mapping fine-scale urban three-dimensional building structure / Xinxin Wu in Sustainable Cities and Society, vol 80 (May 2022)PermalinkUsing street view images to identify road noise barriers with ensemble classification model and geospatial analysis / Kai Zhang in Sustainable Cities and Society, vol 78 (March 2022)PermalinkAnalytics of location-based big data for smart cities: Opportunities, challenges, and future directions / Haosheng Huang in Computers, Environment and Urban Systems, vol 90 (November 2021)PermalinkTowards culture-aware smart and sustainable cities: Integrating historical sources in spatial information infrastructures / Bénédicte Bucher in ISPRS International journal of geo-information, vol 10 n° 9 (September 2021)PermalinkThe urban governance configuration: A conceptual framework for understanding complexity and enhancing transitions to greater sustainability in cities / Isa Baud in Geography compass, vol 15 n° 5 (May 2021)PermalinkLearning from the informality. Using GIS tools to analyze the structure of autopoietic urban systems in the “smart perspective” / Valerio Di pinto in ISPRS International journal of geo-information, vol 10 n° 4 (April 2021)PermalinkThe influence of urban form on the spatiotemporal variations in land surface temperature in an arid coastal city / Irshad Mir Parvez in Geocarto international, vol 36 n° 6 ([01/04/2021])PermalinkPermalinkDevelopment and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors / Marta Sapena Moll (2021)Permalink