Descripteur



Etendre la recherche sur niveau(x) vers le bas
Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture / Dino Lenco in ISPRS Journal of photogrammetry and remote sensing, Vol 158 (December 2019)
![]()
[article]
Titre : Combining Sentinel-1 and Sentinel-2 Satellite image time series for land cover mapping via a multi-source deep learning architecture Type de document : Article/Communication Auteurs : Dino Lenco, Auteur ; Roberto Interdonato, Auteur ; Raffaele Gaetano, Auteur ; Ho Tong Minh Dinh, Auteur Année de publication : 2019 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] Burkina Faso
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image Sentinel-SAR
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] Réunion, île de la
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) The huge amount of data currently produced by modern Earth Observation (EO) missions has allowed for the design of advanced machine learning techniques able to support complex Land Use/Land Cover (LULC) mapping tasks. The Copernicus programme developed by the European Space Agency provides, with missions such as Sentinel-1 (S1) and Sentinel-2 (S2), radar and optical (multi-spectral) imagery, respectively, at 10 m spatial resolution with revisit time around 5 days. Such high temporal resolution allows to collect Satellite Image Time Series (SITS) that support a plethora of Earth surface monitoring tasks. How to effectively combine the complementary information provided by such sensors remains an open problem in the remote sensing field. In this work, we propose a deep learning architecture to combine information coming from S1 and S2 time series, namely TWINNS (TWIn Neural Networks for Sentinel data), able to discover spatial and temporal dependencies in both types of SITS. The proposed architecture is devised to boost the land cover classification task by leveraging two levels of complementarity, i.e., the interplay between radar and optical SITS as well as the synergy between spatial and temporal dependencies. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Koumbia site in Burkina Faso and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal. Numéro de notice : A2019-544 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.09.016 date de publication en ligne : 27/09/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.09.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94186
in ISPRS Journal of photogrammetry and remote sensing > Vol 158 (December 2019)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2019121 SL Revue Centre de documentation Revues en salle Disponible Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis / Divyesh Varade in Geocarto international, vol 34 n° 14 ([30/10/2019])
![]()
[article]
Titre : Potential of Landsat-8 and Sentinel-2A composite for land use land cover analysis Type de document : Article/Communication Auteurs : Divyesh Varade, Auteur ; Anudeep Sure, Auteur ; Onkar Dikshit, Auteur Année de publication : 2019 Article en page(s) : pp 1552 - 1567 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse linéaire des mélanges spectraux
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] image EO1-Hyperion
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Inde
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) This study proposes the development of a multi-sensor, multi-spectral composite from Landsat-8 and Sentinel-2A imagery referred to as ‘LSC’ for land use land cover (LULC) characterisation and compared with respect to the hyperspectral imagery of the EO1: Hyperion sensor. A three-stage evaluation was implemented based on the similarity observed in the spectral response, supervised classification results and endmember abundance information obtained using linear spectral unmixing. The study was conducted for two areas located around Dhundi and Rohtak in Himachal Pradesh and Haryana, respectively. According to the analysis of the spectral reflectance curves, the spectral response of the LSC is capable of identifying major LULC classes. The kappa accuracy of 0.85 and 0.66 was observed for the classification results from LSC and Hyperion data for Dhundi and Rohtak datasets, respectively. The coefficient of determination was found to be above 0.9 for the LULC classes in both the datasets as compared to Hyperion, indicating a good agreement. Thus, these three-stage results indicated the significant potential of a composite derived from freely available multi-sensor multi-spectral imagery as an alternative to hyperspectral imagery for LULC studies. Numéro de notice : A2019-527 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2018.1497096 date de publication en ligne : 07/09/2018 En ligne : https://doi.org/10.1080/10106049.2018.1497096 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94101
in Geocarto international > vol 34 n° 14 [30/10/2019] . - pp 1552 - 1567[article]Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use / Alexis Comber in Transactions in GIS, Vol 23 n°5 (October 2019)
![]()
[article]
Titre : Considering spatiotemporal processes in big data analysis: Insights from remote sensing of land cover and land use Type de document : Article/Communication Auteurs : Alexis Comber, Auteur ; Michael A. Wulder, Auteur Année de publication : 2019 Article en page(s) : pp 879 - 891 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] inventaire de la végétation
[Termes descripteurs IGN] métadonnées
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] télédétection
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Data are increasingly spatio‐temporal—they are collected some‐where and at some‐time. The role of proximity in spatial process is well understood, but its value is much more uncertain for many temporal processes. Using the domain of land cover/land use (LCLU), this article asserts that analyses of big data should be grounded in understandings of underlying process. Processes exhibit behaviors over both space and time. Observations and measurements may or may not coincide with the process of interest. Identifying the presence or absence of a given process, for instance disentangling vegetation phenology from stress, requires data analysis to be informed by knowledge of the process characteristics and, critically, how these manifest themselves over the spatio‐temporal unit of analysis. Drawing from LCLU, we emphasize the need to identify process and consider process phase to quantify important signals associated with that process. The aim should be to link the seriality of the spatio‐temporal data to the phase of the process being considered. We elucidate on these points and opportunities for insights and leadership from the geographic community. Numéro de notice : A2019-549 Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12559 date de publication en ligne : 08/07/2019 En ligne : https://doi.org/10.1111/tgis.12559 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94199
in Transactions in GIS > Vol 23 n°5 (October 2019) . - pp 879 - 891[article]High‐resolution national land use scenarios under a shrinking population in Japan / Haruka Ohashi in Transactions in GIS, vol 23 n° 4 (August 2019)
![]()
[article]
Titre : High‐resolution national land use scenarios under a shrinking population in Japan Type de document : Article/Communication Auteurs : Haruka Ohashi, Auteur ; Keita Fukasawa, Auteur ; Toshinori Ariga, Auteur Année de publication : 2019 Article en page(s) : pp 786 - 804 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] aménagement du territoire
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] classification et arbre de régression
[Termes descripteurs IGN] décroissance urbaine
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données démographiques
[Termes descripteurs IGN] données topographiques
[Termes descripteurs IGN] Japon
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] optimisation spatiale
[Termes descripteurs IGN] population
[Termes descripteurs IGN] service écosystémique
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) In sharp contrast with the global trend in population growth, certain developed countries are expected to experience rapid national population declines. Considering future land use scenarios that include depopulation is necessary to evaluate changes in ecosystem services that affect human well‐being and to facilitate comprehensive strategies for balancing rural and urban development. In this study, we applied a population‐projection‐assimilated predictive land use modeling (PPAP‐LM) approach, in which a spatially explicit population projection was incorporated as a predictor in a land use model. To analyze the effects of future population distributions on land use, we developed models for five land use types and generated projections for two scenarios (centralization and decentralization) under a shrinking population in Japan during 2015–2050. Our results suggested that population centralization promotes the compaction of built‐up areas and the expansion of forest and wastelands, while population decentralization contributes to the maintenance of a mixture of forest and cultivated land. Numéro de notice : A2019-418 Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12525 date de publication en ligne : 08/03/2019 En ligne : https://doi.org/10.1111/tgis.12525 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93545
in Transactions in GIS > vol 23 n° 4 (August 2019) . - pp 786 - 804[article]A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation / Qing Wang in ISPRS Journal of photogrammetry and remote sensing, vol 152 (June 2019)
![]()
[article]
Titre : A new stochastic simulation algorithm for image-based classification : Feature-space indicator simulation Type de document : Article/Communication Auteurs : Qing Wang, Auteur ; Hua Sun, Auteur ; Ruopu Li, Auteur ; Guangxing Wang, Auteur Année de publication : 2019 Article en page(s) : pp 145 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] image Landsat-OLI
[Termes descripteurs IGN] image SPOT 5
[Termes descripteurs IGN] Mongolie intérieure (Chine)
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] utilisation du sol
[Termes descripteurs IGN] variogrammeRésumé : (Auteur) Traditional parametric methods for classification of land use and land cover (LULC) types using remote sensing imagery assume a global distribution model and fail to consider local variation of categorical variables. Differently, non-parametric methods do not make any statistical assumptions but are typically sensitive to the sample sizes of training sample data that usually require a high cost to collect in the field. Geostatistical classifiers, such as indicator kriging and simulation, are local variability-based methods that exhibit great potential for image-based classification of LULC types. However, variogram models required are highly sensitive to the spatial configuration of training samples as well as sample size given a study area. Moreover, when a large number of spectral variables are considered into kriging systems, modeling the variograms and cross-variograms would be problematic. To circumvent these issues, this study extended the geostatistical methods from a 2-dimensional geographic space to a m-dimensional image feature space to derive feature-space indicator variograms (FSIVs). Moreover, a novel stochastic simulation classification algorithm, Feature-Space Indicator Simulation (FSIS), was proposed and examined for classification of LULC types in Duolun County located in Inner Mongolia and in Huang-Feng-Qiao (HFQ) forest farm, Hunan of China. In Duolun, six LULC types were involved and in HFQ a complicated forest landscape consisting of nine forest types plus water, built-up area, and agricultural/bare soil, was classified. The classification results of FSIS were compared with another feature-space geostatistical classifier – feature-space indicator kriging (FSIK), a traditional parametric method – maximum likelihood (ML), a widely used nonparametric method – support vector machine (SVM), and a recently popular method – random forest (RF). The results showed that compared with ML, SVM and RF, in both study areas FSIS statistically significantly increased the accuracy of the classifications by 10.0–29.9% for percentage correct and 19.0–47.6% for Kappa statistic. Compared with FSIK, FSIS also improved the classification accuracy but the accuracy increases were relatively smaller with the percentages correct of 3.5% and 7.6% and the Kappa values of 4.6% and 8.6% for Duolun and HFQ, respectively. Moreover, FSIS led to the spatial uncertainties of the classification estimates as the quality measure of the estimates. In addition, the results also demonstrated that FSIVs were sensitive to the within-class heterogeneity but not very much to the size of training samples. Overall, FSIS exhibited the greater potential to improve the classification accuracy of LULC and forest types using remote sensing image. Numéro de notice : A2019-457 Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.04.011 date de publication en ligne : 25/04/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.04.011 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92871
in ISPRS Journal of photogrammetry and remote sensing > vol 152 (June 2019) . - pp 145 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019061 SL Revue Centre de documentation Revues en salle Disponible 081-2019063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Land parcel management system in Poland and a case study of EU member states / Agnieszka Trystuła in Geodetski vestnik, vol 62 n° 4 (December 2018 - February 2019)
PermalinkAn experimental framework for integrating citizen and community science into land cover, land use, and land change detection processes in a national mapping agency / Ana-Maria Olteanu-Raimond in Land, vol 7 n° 3 (September 2018)
PermalinkA comparative approach to modelling multiple urban land use changes using tree-based methods and cellular automata: the case of Greater Tokyo Area / Guodong Du in International journal of geographical information science IJGIS, vol 32 n° 3-4 (March - April 2018)
PermalinkUse of unsupervised classification for the determination of prevailing land use typology / Miha Konjar in Geodetski vestnik, vol 61 n° 4 (December 2017 - February 2018)
PermalinkEffects of using different sources of remote sensing and geographic information system data on urban stormwater 2D–1D modeling / Yi Hong in Applied sciences, vol 7 n° 9 (September 2017)
PermalinkA higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkFusion of RADARSAT-2 and multispectral optical remote sensing data for LULC extraction in a tropical agricultural area / Mohamed Barakat A. Gibril in Geocarto international, vol 32 n° 7 (July 2017)
PermalinkCartographic analysis of transformations of the spatial structure of lands of Podgorze in Krakow in Poland in the period of 1847–2016 / Wojciech Przegon in Geodetski vestnik, vol 61 n° 2 (June - August 2017)
PermalinkAn intelligent spatial land use planning support system using socially rational agents / Seyed Moral Ghavami in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkA GIS approach to exploring monetary value on enclosure era property-related maps / Christopher Macdonald Hewitt in Cartographic journal (the), Vol 54 n° 2 (May 2017)
Permalink