Descripteur
Documents disponibles dans cette catégorie (45)



Etendre la recherche sur niveau(x) vers le bas
Accessing spatial knowledge networks with maps / Markus Jobst in International journal of cartography, vol 8 n° 1 (March 2022)
![]()
[article]
Titre : Accessing spatial knowledge networks with maps Type de document : Article/Communication Auteurs : Markus Jobst, Auteur ; Georg Gartner, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] agrégation spatiale
[Termes IGN] généralisation automatique de données
[Termes IGN] intégration de données
[Termes IGN] jumeau numérique
[Termes IGN] ontologie
[Termes IGN] réseau sémantique
[Vedettes matières IGN] CartologieRésumé : (auteur) Currently, knowledge networks develop to establish common data spaces. A common data-space offers mutual exchange and reusability for data sources and their derived information and provides access to structured knowledge and even creates wisdom. The geospatial domain becomes included in those knowledge networks and, therefore, creates spatial knowledge networks. ‘Geospatial’ is moving from a special expert domain to a ‘normal’ common data source that is processed for specific data science use cases. Maps with their different levels of abstraction according to its transmission task may offer (1) strategies to enhance processing performance, due to its abstraction, (2) persistent references of map features throughout different scales (abstractions) and (3) improvement of the transmission of spatial information, which includes the transmission interfaces as well as geo-communication. This paper tries to identify new functions for maps in new developing application areas. For example, a ‘universal semantic structure of topographic content’ could help to establish relations/links across domains that only have their own feature keys. We try to set the scene of cartography in a common data-space and highlight some requirements in the world of spatial knowledge networks, which are needed for automatization, machine learning and AI. According to Gordon and de Souza location matters: ‘Mapping is not simply a mode of visualisation, but a “central organizational device for networked communications”, an adaptive interface through which users can access, alter and deploy an expansive database of information, and a platform to socialize spatial information through collective editing, annotations, discussion, etc.’. Numéro de notice : A2022-306 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/23729333.2021.1972910 Date de publication en ligne : 06/09/2021 En ligne : https://doi.org/10.1080/23729333.2021.1972910 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100394
in International journal of cartography > vol 8 n° 1 (March 2022)[article]Aggregating land-use polygons considering line features as separating map elements / Sven Gedicke in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)
![]()
[article]
Titre : Aggregating land-use polygons considering line features as separating map elements Type de document : Article/Communication Auteurs : Sven Gedicke, Auteur ; Johannes Oehrlein, Auteur ; Jan‐Henrik Haunert, Auteur Année de publication : 2021 Article en page(s) : pp 124 - 139 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] agrégation spatiale
[Termes IGN] algorithme du recuit simulé
[Termes IGN] généralisation cartographique automatisée
[Termes IGN] méthode heuristique
[Termes IGN] optimisation (mathématiques)
[Termes IGN] réseau routier
[Termes IGN] utilisation du sol
[Vedettes matières IGN] GénéralisationRésumé : (Auteur) Map generalization is the process of deriving small-scale target maps from a large-scale source map or database while preserving valuable information. In this paper we focus on topographic data, in particular areas of different land-use classes and line features representing the road network. When reducing the map scale, some areas need to be merged to larger composite regions. This process is known as area aggregation. Given a planar partition of areas, one usually aims to build geometrically compact regions of sufficient size while keeping class changes small. Since line features (e.g. roads) are perceived as separating elements in a map, we suggest integrating them into the process of area aggregation. Our aim is that boundaries of regions coincide with line features in such a way that strokes (i.e. chains of line features with small angles of deflection) are not broken into short sections. Complementing the criteria of compact regions and preserving land-use information, we consider this aim as a third criterion. Regarding all three criteria, we formalize an optimization problem and solve it with a heuristic approach using simulated annealing. Our evaluation is based on experiments with different parameter settings. In particular, we compare results of a baseline method that considers two criteria, namely compactness and class changes, with results of our new method that additionally considers our stroke-based criterion. Our results show that this third criterion can be substantially improved while keeping the quality with respect to the original two criteria on a similar level. Numéro de notice : A2021-180 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1851613 Date de publication en ligne : 26/01/2021 En ligne : https://doi.org/10.1080/15230406.2020.1851613 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97067
in Cartography and Geographic Information Science > vol 48 n° 2 (March 2021) . - pp 124 - 139[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021021 SL Revue Centre de documentation Revues en salle Disponible The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study / Yanan Yan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
![]()
[article]
Titre : The application of bidirectional reflectance distribution function data to recognize the spatial heterogeneity of mixed pixels in vegetation remote sensing: a simulation study Type de document : Article/Communication Auteurs : Yanan Yan, Auteur ; Lei Deng, Auteur ; L. Xian-Lin, Auteur Année de publication : 2020 Article en page(s) : pp 161 - 167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] agrégation spatiale
[Termes IGN] anisotropie
[Termes IGN] bande spectrale
[Termes IGN] classification pixellaire
[Termes IGN] détection d'objet
[Termes IGN] dispersion
[Termes IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes IGN] distribution spatiale
[Termes IGN] extraction de la végétation
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] modèle de transfert radiatif
[Termes IGN] réflectance
[Termes IGN] régression linéaire
[Termes IGN] télédétectionRésumé : (auteur) Spectral decomposition of mixed pixels can provide information about the abundance of end members but fails to indicate the spatial distribution of end members in vegetation remote sensing. This work is a significant attempt to use the bidirectional reflectance distribution function (BRDF) characteristics of mixed pixels in the prediction of spatial-heterogeneity metrics. Data sets from this function with different spatial distributions were constructed by the discrete anisotropic radiative transfer model, and three spatial aggregation and dispersion metrics were calculated: percentage of like adjacencies, spatial division index, and aggregation index. A simple linear regression method was used to construct the prediction model of spatial aggregation and dispersion metrics. The potential of multiangle remote sensing model for identifying spatial patterns well was demonstrated, and its importance was found to differ for different spatial aggregation and dispersion metrics. Specifically, the precision of the model based on multiangle reflectance used for predicting the spatial division index could meet a minimum root mean square of 5.95%. The reflectance features from backward observation on the principal plane play the leading role in recognizing the spatial heterogeneity of mixed pixels. The prediction model is sufficiently robust to distinguish the same vegetation with different growth trends, but also performs well when the ground objects have a smaller reflectance difference in the mixed pixels in a certain band. This study is expected to offer a new thought for spatial-heterogeneity identification of ground objects and thus promote the development of remote sensing technology in assessing spatial distribution. Numéro de notice : A2020-146 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.3.161 Date de publication en ligne : 01/03/2020 En ligne : https://doi.org/10.14358/PERS.86.3.161 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94775
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 3 (March 2020) . - pp 161 - 167[article]
Titre : Exact optimization algorithms for the aggregation of spatial data Type de document : Thèse/HDR Auteurs : Johannes Oehrlein, Auteur Editeur : Munich : Bayerische Akademie der Wissenschaften Année de publication : 2020 Collection : DGK - C, ISSN 0065-5325 num. 862 Importance : 184 p. Format : 21 x 30 cm Note générale : bibliographie
Dissertation zur Erlangung des GradesDoktor-Ingenieur (Dr.-Ing.)
Diese Arbeit ist gleichzeitig als elektronische Dissertationbei der Universitäts-und Landesbibliothek Bonn veröffentlichtLangues : Anglais (eng) Descripteur : [Termes IGN] agrégation spatiale
[Termes IGN] cycliste
[Termes IGN] données localisées
[Termes IGN] espace vert
[Termes IGN] généralisation automatique de données
[Termes IGN] programmation linéaire
[Termes IGN] réseau routier
[Termes IGN] trajet (mobilité)
[Termes IGN] zone urbaine
[Vedettes matières IGN] GénéralisationRésumé : (auteur) The aggregation of spatial data is a recurring problem in geoinformation science. Aggregating data means subsuming multiple pieces of information into a less complex representation. It is pursued for various reasons, like having a less complex data structure to apply further processing algorithms or a simpler visual representation as targeted in map generalization. In this thesis, we identify aggregation problems dealing with spatial data and formalize themas optimization problems. That means we set up a function that is capable of evaluating valid solutions to the considered problem, like a cost function for minimization problems. To each problem introduced, we present an algorithm that finds a valid solution that optimizes this objective function. In general, this superiority with respect to the quality of the solution comes at the cost of computation efficiency, a reason why non-exact approaches like heuristics are widely used for optimization. Nevertheless, the higher quality of solutions yielded by exact approaches is undoubtedly important. On the one hand, “good” solutions are sometimes not sufficient. On the other hand, exact approaches yield solutions that maybe used as benchmarks for the evaluation of non-exact approaches. This kind of application is of particular interest since heuristic approaches, for example, give no guarantee on the quality of solutions found. Furthermore, algorithms that provide exact solutions to optimization problems reveal weak spots of underlying models. A result that does not satisfy the user cannot be excused with a mediocre performance of an applied heuristic. With this motivation, we developed several exact approaches for aggregation problems, which we present in this thesis. Since we deal with spatial data, for all problems considered, the aggregation is based on both geometric and semantic aspects although the focus varies. The first problem we discuss is about visualizing a road network in the context of navigation. Given a fixed location in the network, we aim for a clear representation of the surroundings. For this purpose, we introduce an equivalence relation for destinations in the network based on which we perform the aggregation. We succeed in designing an efficient algorithm that aggregates as many equivalent destinations as possible. Furthermore, we tackle a class of similar and frequently discussed problems concerning the aggregation of areal units into larger, connected regions. Since these problems are NP-complete, i.e. extraordinarily complex, we do not aim for an efficient exact algorithm (which is suspected not to exist) but present a strong improvement to existing exact approaches. In another setup, we present an efficient algorithm for the analysis of urban green-space supply. Performing a hypothetical assignment of citizens to available green spaces, it detects local shortages and patterns in the accessibility of green space within a city. Finally, we introduce and demonstrate a tool for detecting route preferences of cyclists based on a selection of given trajectories. Examining a set of criteria forming suitable candidates, we aggregate them efficiently to the best-fitting derivable criterion. Overall, we present exact approaches to various aggregation problems. In particular, the NP-complete problem we deal with firmly underscores, as expected, the need for heuristic approaches. For applications asking for an immediate solution, it may be reasonable to apply a heuristic approach. This holds in particular due to easy and generally applicable meta-heuristics being available. However, with this thesis, we argue for applying exact approaches if possible. The guaranteed superior quality of solutions speaks for itself. Besides, we give additional examples which show that exact approaches can be applied efficiently as well. Numéro de notice : 17681 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Thèse étrangère Note de thèse : PhD dissertation : : Rheinische Friedrich-Wilhelms-Universität Bonn : 2020 En ligne : https://nbn-resolving.org/urn:nbn:de:hbz:5-60713 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98023 Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
![]()
[article]
Titre : Understanding demographic and socioeconomic biases of geotagged Twitter users at the county level Type de document : Article/Communication Auteurs : Jiang Juqin, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur Année de publication : 2019 Article en page(s) : pp 228 - 242 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] agrégation spatiale
[Termes IGN] contenu généré par les utilisateurs
[Termes IGN] données démographiques
[Termes IGN] données massives
[Termes IGN] données socio-économiques
[Termes IGN] erreur systématique
[Termes IGN] Etats-Unis
[Termes IGN] géobalise
[Termes IGN] régression géographiquement pondérée
[Termes IGN] TwitterRésumé : (Auteur) Massive social media data produced from microblog platforms provide a new data source for studying human dynamics at an unprecedented scale. Meanwhile, population bias in geotagged Twitter users is widely recognized. Understanding the demographic and socioeconomic biases of Twitter users is critical for making reliable inferences on the attitudes and behaviors of the population. However, the existing global models cannot capture the regional variations of the demographic and socioeconomic biases. To bridge the gap, we modeled the relationships between different demographic/socioeconomic factors and geotagged Twitter users for the whole contiguous United States, aiming to understand how the demographic and socioeconomic factors relate to the number of Twitter users at county level. To effectively identify the local Twitter users for each county of the United States, we integrate three commonly used methods and develop a query approach in a high-performance computing environment. The results demonstrate that we can not only identify how the demographic and socioeconomic factors relate to the number of Twitter users, but can also measure and map how the influence of these factors vary across counties. Numéro de notice : A2019-093 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2018.1434834 Date de publication en ligne : 09/02/2018 En ligne : https://doi.org/10.1080/15230406.2018.1434834 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92338
in Cartography and Geographic Information Science > vol 46 n° 3 (May 2019) . - pp 228 - 242[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2019031 SL Revue Centre de documentation Revues en salle Disponible Use of unsupervised classification for the determination of prevailing land use typology / Miha Konjar in Geodetski vestnik, vol 61 n° 4 (December 2017 - February 2018)
PermalinkOptimal resolution for linking remotely sensed and forest inventory data in Europe / Adam Moreno in Remote sensing of environment, vol 183 (15 September 2016)
PermalinkUn protocole basé sur des mobiles sécurisés pour une collecte participative de données spatiales en mobilité réellement anonyme / Dai Hai Ton That in Revue internationale de géomatique, vol 26 n° 2 (avril - juin 2016)
PermalinkA multiscale masking method for point geographic data / K.C. Clarke in International journal of geographical information science IJGIS, vol 30 n° 1-2 (January - February 2016)
PermalinkUnderstanding the combined impacts of aggregation and spatial non-stationarity: The case of migration-environment associations in rural South Africa / Galen McLaurin in Transactions in GIS, vol 19 n° 6 (December 2015)
PermalinkComparaison de méthodes de spatialisation pour l'agrégation par parcelle des estimations de paramètres forestiers par lidar aéroporté / Jean-Matthieu Monnet in Revue Française de Photogrammétrie et de Télédétection, n° 211 - 212 (juillet - décembre 2015)
PermalinkStacked space-time densities: a geovisualisation approach to explore dynamics of space use over time / Urška Demšar in Geoinformatica, vol 19 n° 1 (January - March 2015)
PermalinkPermalinkThe contribution of mathematical morphology in spatial analysis of aggregated data / Sophie Liziard in Revue internationale de géomatique, vol 23 n° 3 - 4 (septembre 2013 - février 2014)
PermalinkContinuous aggregate nearest neighbor queries / H. Elmongui in Geoinformatica, vol 17 n° 1 (January 2013)
Permalink