Descripteur



Etendre la recherche sur niveau(x) vers le bas
Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification Type de document : Article/Communication Auteurs : Yu Li, Auteur ; Ting Lu, Auteur ; Shutao Li, Auteur Année de publication : 2020 Article en page(s) : pp 4976 - 4988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse infrapixellaire
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multiple
[Termes descripteurs IGN] superpixelRésumé : (auteur) Active learning (AL) attempts to actively select the most representative or useful training samples in an iterative manner. The aim is to simultaneously improve the classification performance and reduce the manual labeling effort. In this article, a novel subpixel-pixel-superpixel-based multiview AL (MAL) (SPS-MAL) method is proposed for hyperspectral image (HSI) classification. Here, the multiple views are generated via extracting the subpixel-level, pixel-level, and superpixel-level information. The multiple views can reflect various characteristics of HSI, i.e., spectral mixture, spectral discrimination, and spectral–spatial structure. Therefore, the joint use of diverse and complementary information in multiple views will contribute to a better identification ability of different classes. In addition, a coarse-to-fine MAL algorithm is introduced to effectively select the most representative samples with the most uncertainty. Specifically, a disagreement analysis on multiple views and joint posterior probability estimation is used to query unlabeled samples. Along with the expansion of training samples, view-specific confidence scores are estimated to adaptively integrate the classification results of multiple views, according to their discrimination performance. In this way, the classification accuracy will be further boosted while the number of necessary training samples can be significantly reduced. The experimental classification results on three well-known HSIs demonstrate the effectiveness of the proposed SPS-MAL method. Numéro de notice : A2020-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2971081 date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2971081 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95388
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4976 - 4988[article]Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (janvier 2020)
![]()
[article]
Titre : Classification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery Type de document : Article/Communication Auteurs : H. Tombul, Auteur ; Ismail Colkesen, Auteur ; Taskin Kavzoglu, Auteur Année de publication : 2020 Article en page(s) : pp 14 - 22 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse canonique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] boosting adapté
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] Populus (genre)
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] Rotation Forest classification
[Termes descripteurs IGN] segmentation multi-échelle
[Termes descripteurs IGN] TurquieRésumé : (auteur) The poplar species in the forest ecosystems are one of the most valuable and beneficial species for the society and environment. Conventional methods require high cost, time and labor need, and the results obtained vary and are insu˚cient in terms of achieved accuracy level. Determination of poplar cultivated fields and mapping of their spatial sites play a vital role for decision-makers and planners to enhance the economic and ecological value of poplar trees. The study aims to map Poplar (P. deltoides) cultivated areas in Akyazi district of Sakarya, Turkey province using various combinations of the Sentinel-2A image bands. For this purpose, object-based classification based on multi-resolution segmentation algorithm was utilized to produce image objects and ensemble learning algorithms, namely, Adaboost (AdaB), Random Forest (RF), Rotation Forest (RotFor) and Canonical correlation forest (CCF) were applied to produce thematic maps. In order to analyze the effects of the spectral bands of the Sentinel-2A image on the object-based classification performance, three datasets consisting of different spectral band combinations (i.e. four 10 m bands, six 20 m bands and ten 10m pan-sharpened bands) were used. The results showed that the RotFor and CCF classifiers produced superior classification performances compared to the AdaB and RF classifiers for the band combinations regarded in this study. Moreover, it was found that determination of poplar tree class level accuracy reached to ~94% in terms of F-score. It was also observed that the inclusion of the six spectral bands at 20 m resolution resulted in a noteworthy increase in classification accuracy (up to 6%) compared to single 10m band combination. Numéro de notice : A2020-420 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2020-0003 date de publication en ligne : 04/05/2020 En ligne : https://doi.org/10.1515/jogs-2020-0003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95477
in Journal of geodetic science > vol 10 n° 1 (janvier 2020) . - pp 14 - 22[article]Comparing supervised learning algorithms for Spatial Nominal Entity recognition / Amine Medad (2020)
![]()
Titre : Comparing supervised learning algorithms for Spatial Nominal Entity recognition Type de document : Article/Communication Auteurs : Amine Medad, Auteur ; Mauro Gaio, Auteur ; Ludovic Moncla, Auteur ; Sébastien Mustière , Auteur ; Yannick Le Nir, Auteur
Editeur : Göttingen : Copernicus publications Année de publication : 2020 Collection : AGILE GIScience Series num. vol 1 Projets : 1-Pas de projet / Conférence : AGILE 2020, 23rd AGILE Conference on Geographic Information Science 16/06/2020 19/06/2020 Chania - Crète Grèce Open Access Proceedings Importance : 18 p. Format : 21 x 30 cm Note générale : biblographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] entité géographique
[Termes descripteurs IGN] recherche d'information géographique
[Termes descripteurs IGN] reconnaissance de noms
[Termes descripteurs IGN] traitement du langage naturelRésumé : (auteur) Discourse may contain both named and nominal entities. Most common nouns or nominal mentions in natural language do not have a single, simple meaning but rather a number of related meanings. This form of ambiguity led to the development of a task in natural language processing known as Word Sense Disambiguation. Recognition and categorisation of named and nominal entities is an essential step for Word Sense Disambiguation methods. Up to now, named entity recognition and categorisation systems mainly focused on the annotation, categorisation and identification of named entities. This paper focuses on the annotation and the identification of spatial nominal entities. We explore the combination of Transfer Learning principle and supervised learning algorithms, in order to build a system to detect spatial nominal entities. For this purpose, different supervised learning algorithms are evaluated with three different context sizes on two manually annotated datasets built from Wikipedia articles and hiking description texts. The studied algorithms have been selected for one or more of their specific properties potentially useful in solving our problem. The results of the first phase of experiments reveal that the selected algorithms have similar performances in terms of ability to detect spatial nominal entities. The study also confirms the importance of the size of the window to describe the context, when word-embedding principle is used to represent the semantics of each word. Numéro de notice : C2020-013 Affiliation des auteurs : LaSTIG+Ext (2020- ) Thématique : GEOMATIQUE/INFORMATIQUE Nature : Communication nature-HAL : ComAvecCL&ActesPubliésIntl DOI : 10.5194/agile-giss-1-15-2020 date de publication en ligne : 15/07/2020 En ligne : https://doi.org/10.5194/agile-giss-1-15-2020 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95688 A double-strategy-check active learning algorithm for hyperspectral image classification / Ying Cui in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
![]()
[article]
Titre : A double-strategy-check active learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Ying Cui, Auteur ; Xiaowei Ji, Auteur ; Kai Xu, Auteur ; Liguo Wang, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] image hyperspectraleRésumé : (Auteur) Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification. Numéro de notice : A2019-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.85.11.841 date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.841 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94067
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 SL Revue Centre de documentation Indéterminé Disponible
Titre : Automated machine learning : methods, systems, challenges Type de document : Monographie Auteurs : Frank Hutter, Editeur scientifique ; Lars Kotthoff, Editeur scientifique ; Joaquin Vanschoren, Editeur scientifique Editeur : Springer Nature Année de publication : 2019 Collection : The Springer Series on Challenges in Machine Learning SSCML, ISSN 2520-1328 Importance : 219 p. ISBN/ISSN/EAN : 978-3-030-05318-5 Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] optimisation (mathématiques)Index. décimale : 26.40 Intelligence artificielle Résumé : (Editeur) This open access book presents the first comprehensive overview of general methods in Automated Machine Learning (AutoML), collects descriptions of existing systems based on these methods, and discusses the first series of international challenges of AutoML systems. The recent success of commercial ML applications and the rapid growth of the field has created a high demand for off-the-shelf ML methods that can be used easily and without expert knowledge. However, many of the recent machine learning successes crucially rely on human experts, who manually select appropriate ML architectures (deep learning architectures or more traditional ML workflows) and their hyperparameters. To overcome this problem, the field of AutoML targets a progressive automation of machine learning, based on principles from optimization and machine learning itself. This book serves as a point of entry into this quickly-developing field for researchers and advanced students alike, as well as providing a reference for practitioners aiming to use AutoML in their work. Note de contenu :
AUTOML METHODS
- Hyperparameter Optimization
- Meta-Learning
- Neural Architecture Search
AUTOML SYSTEMS
- Auto-WEKA: Automatic Model Selection and Hyperparameter Optimization in WEKA
- Hyperopt-Sklearn
- Auto-sklearn: Efficient and Robust Automated Machine Learning
- Towards Automatically-Tuned Deep Neural Networks
- TPOT: A Tree-Based Pipeline Optimization Tool for Automating Machine Learning
- The Automatic Statistician
AUTOML CHALLENGES
- Analysis of the AutoML Challenge Series 2015–2018
- Correction to: Neural Architecture SearchNuméro de notice : 26299 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Monographie DOI : 10.1007%2F978-3-030-05318-5 date de publication en ligne : 04/02/2020 En ligne : https://link.springer.com/book/10.1007%2F978-3-030-05318-5 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95032 PermalinkHyperparameter optimization of neural network-driven spatial models accelerated using cyber-enabled high-performance computing / Minrui Zheng in International journal of geographical information science IJGIS, Vol 33 n° 1-2 (January - February 2019)
PermalinkLearning a discriminative distance metric with label consistency for scene classification / Yuebin Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
PermalinkUnsupervised feature learning for land-use scene recognition / Jiayuan Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
PermalinkLearning-based spatial–temporal superresolution mapping of forest cover with MODIS images / Yihang Zhang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
PermalinkThe use of logistic model tree (LMT) for pixel- and object-based classifications using high-resolution WorldView-2 imagery / Ismail Colkesen in Geocarto international, vol 32 n° 1 (January 2017)
PermalinkSemi-supervised hyperspectral classification from a small number of training samples using a co-training approach / Michał Romaszewski in ISPRS Journal of photogrammetry and remote sensing, vol 121 (November 2016)
PermalinkDisaggregation of remotely sensed soil moisture in heterogeneous landscapes using holistic structure-based models / Subit Chakrabarti in IEEE Transactions on geoscience and remote sensing, vol 54 n° 8 (August 2016)
PermalinkLearning-based superresolution land cover mapping / Feng Ling in IEEE Transactions on geoscience and remote sensing, vol 54 n° 7 (July 2016)
PermalinkAn assessment of algorithmic parameters affecting image classification accuracy by random forests / Dee Shi in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 6 (June 2016)
Permalink