Descripteur



Etendre la recherche sur niveau(x) vers le bas
Automatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
![]()
[article]
Titre : Automatic filtering and 2D modeling of airborne laser scanning building point cloud Type de document : Article/Communication Auteurs : Fayez Tarsha-Kurdi, Auteur ; Mohammad Awrangjeb, Auteur ; Nosheen Munir, Auteur Année de publication : 2021 Article en page(s) : pp 164 - 188 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] modélisation 2D
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] télémétrie laser aéroporté
[Termes descripteurs IGN] toitRésumé : (Auteur) This article suggests a new approach to automatic building footprint modeling using exclusively airborne LiDAR data. The first part of the suggested approach is the filtering of the building point cloud using the bias of the Z‐coordinate histogram. This operation aims to detect the points of roof class from the building point cloud. Hence, eight rules for histogram interpretation are suggested. The second part of the suggested approach is the roof modeling algorithm. It starts by detecting the roof planes and calculating their adjacency matrix. Hence, the roof plane boundaries are classified into four categories: (1) outer boundary; (2) inner plane boundaries; (3) roof detail boundaries; and (4) boundaries related to the missing planes. Finally, the junction relationships of roof plane boundaries are analyzed for detecting the roof vertices. With regard to the resulting accuracy quantification, the average values of the correctness and the completeness indices are employed in both approaches. In the filtering algorithm, their values are respectively equal to 97.5 and 98.6%, whereas they are equal to 94.0 and 94.0% in the modeling approach. These results reflect the high efficacy of the suggested approach. Numéro de notice : A2021-187 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12685 date de publication en ligne : 11/09/2020 En ligne : https://doi.org/10.1111/tgis.12685 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97154
in Transactions in GIS > Vol 25 n° 1 (February 2021) . - pp 164 - 188[article]A feature-preserving point cloud denoising algorithm for LiDAR-derived DEM construction / Chuanfa Chen in Survey review, Vol 53 n° 377 (February 2021)
![]()
[article]
Titre : A feature-preserving point cloud denoising algorithm for LiDAR-derived DEM construction Type de document : Article/Communication Auteurs : Chuanfa Chen, Auteur ; Yuan Gao, Auteur ; Yanyan Li, Auteur Année de publication : 2021 Article en page(s) : pp146 - 157 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] filtrage de points
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] interpolation
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) To attenuate positional errors of LiDAR-derived datasets for constructing digital elevation models (DEMs), a feature-preserving point denoising algorithm (F-PDA) is developed in this paper. F-PDA includes three main steps: surface normal estimation, normal filtering and point position update. Numerical tests with two simulated surfaces indicate that F-PDA is always more accurate than kriging and natural neighbour. Furthermore, F-PDA has a high effectiveness of preserving feature lines. Real-world examples of interpolating LiDAR samples demonstrate that F-PDA can best retain both prominent and subtle terrain features, while faithfully removing errors in mountainous and flat regions. Moreover, it outperforms some well-known interpolation methods. Numéro de notice : A2021-235 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2019.1704562u date de publication en ligne : 23/12/2019 En ligne : https://doi.org/10.1080/00396265.2019.1704562u Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97242
in Survey review > Vol 53 n° 377 (February 2021) . - pp146 - 157[article]Hierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds / Yongjun Wang in ISPRS International journal of geo-information, vol 9 n° 10 (October 2020)
![]()
[article]
Titre : Hierarchical instance recognition of individual roadside trees in environmentally complex urban areas from UAV laser scanning point clouds Type de document : Article/Communication Auteurs : Yongjun Wang, Auteur ; Tengping Jiang, Auteur ; Jing Liu, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 26 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre hors forêt
[Termes descripteurs IGN] arbre urbain
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] gestion urbaine
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] voxel
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Individual tree segmentation is essential for many applications in city management and urban ecology. Light Detection and Ranging (LiDAR) system acquires accurate point clouds in a fast and environmentally-friendly manner, which enables single tree detection. However, the large number of object categories and occlusion from nearby objects in complex environment pose great challenges in urban tree inventory, resulting in omission or commission errors. Therefore, this paper addresses these challenges and increases the accuracy of individual tree segmentation by proposing an automated method for instance recognition urban roadside trees. The proposed algorithm was implemented of unmanned aerial vehicles laser scanning (UAV-LS) data. First, an improved filtering algorithm was developed to identify ground and non-ground points. Second, we extracted tree-like objects via labeling on non-ground points using a deep learning model with a few smaller modifications. Unlike only concentrating on the global features in previous method, the proposed method revises a pointwise semantic learning network to capture both the global and local information at multiple scales, significantly avoiding the information loss in local neighborhoods and reducing useless convolutional computations. Afterwards, the semantic representation is fed into a graph-structured optimization model, which obtains globally optimal classification results by constructing a weighted indirect graph and solving the optimization problem with graph-cuts. The segmented tree points were extracted and consolidated through a series of operations, and they were finally recognized by combining graph embedding learning with a structure-aware loss function and a supervoxel-based normalized cut segmentation method. Experimental results on two public datasets demonstrated that our framework achieved better performance in terms of classification accuracy and recognition ratio of tree. Numéro de notice : A2020-665 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9100595 date de publication en ligne : 10/10/2020 En ligne : https://doi.org/10.3390/ijgi9100595 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96142
in ISPRS International journal of geo-information > vol 9 n° 10 (October 2020) . - 26 p.[article]Unsupervised extraction of urban features from airborne lidar data by using self-organizing maps / Alper Sen in Survey review, vol 52 n° 371 (March 2020)
![]()
[article]
Titre : Unsupervised extraction of urban features from airborne lidar data by using self-organizing maps Type de document : Article/Communication Auteurs : Alper Sen, Auteur ; Baris Suleymanoglu, Auteur ; Metin Soycan, Auteur Année de publication : 2020 Article en page(s) : pp 150 - 158 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] carte de Kohonen
[Termes descripteurs IGN] classification non dirigée
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] extraction de points
[Termes descripteurs IGN] filtre adaptatif
[Termes descripteurs IGN] khi carré
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) The extraction of artificial and natural features using light detection and ranging (Lidar) data is a fundamental task in many fields of research for environmental science. In this study, the possibility of using self-organising maps (SOM), which is an unsupervised artificial neural network classification method to extract the bare earth surface and features from airborne Lidar data, was investigated for two different urban areas. The effect of the enlargement of the study area was analysed using the proposed approach. The appropriate weights of SOM inputs, which are 3D coordinates and intensity, obtained from a Lidar point cloud were determined by using Pearson's chi-squared independence test. The weighted SOM feature extraction performance was better than that of the unweighted SOM. The filtering results of SOM to separate ground and non-ground data were also compared with those obtained by the adaptive TIN filtering algorithm. Most of the non-ground features could be removed by the weighted SOM. Numéro de notice : A2020-079 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2018.1532704 date de publication en ligne : 12/10/2018 En ligne : https://doi.org/10.1080/00396265.2018.1532704 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94642
in Survey review > vol 52 n° 371 (March 2020) . - pp 150 - 158[article]Micro-tasking as a method for human assessment and quality control in a geospatial data import / Atle Frenvik Sveen in Cartography and Geographic Information Science, vol 47 n° 2 (February 2020)
![]()
[article]
Titre : Micro-tasking as a method for human assessment and quality control in a geospatial data import Type de document : Article/Communication Auteurs : Atle Frenvik Sveen, Auteur ; Anne Sofie Strom Erichsen, Auteur ; Terje Midtbo, Auteur Année de publication : 2020 Article en page(s) : pp 141 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] algorithme de filtrage
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] contrôle qualité
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] évaluation des données
[Termes descripteurs IGN] import de données
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] précision des données
[Termes descripteurs IGN] production participativeRésumé : (auteur) Crowd-sourced geospatial data can often be enriched by importing open governmental datasets as long as they are up-to date and of good quality. Unfortunately, merging datasets is not straight forward. In the context of geospatial data, spatial overlaps pose a particular problem, as existing data may be overwritten when a naïve, automated import strategy is employed. For example: OpenStreetMap has imported over 100 open geospatial datasets, but the requirement for human assessment makes this a time-consuming process which requires experienced volunteers or training. In this paper, we propose a hybrid import workflow that combines algorithmic filtering with human assessment using the micro-tasking method. This enables human assessment without the need for complex tools or prior experience. Using an online experiment, we investigated how import speed and accuracy is affected by volunteer experience and partitioning of the micro-task. We conclude that micro-tasking is a viable method for massive quality assessment that does not require volunteers to have prior experience working with geospatial data. Numéro de notice : A2020-058 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2019.1659187 date de publication en ligne : 16/09/2020 En ligne : https://doi.org/10.1080/15230406.2019.1659187 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94575
in Cartography and Geographic Information Science > vol 47 n° 2 (February 2020) . - pp 141 - 152[article]Extracting soil salinization information with a fractional-order filtering algorithm and grid-search support vector machine (GS-SVM) model / Xiaoping Wang in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkLow-frequency desert noise intelligent suppression in seismic data based on multiscale geometric analysis convolutional neural network / Yuxing Zhao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkComparison of filtering algorithms used for DTM production from airborne lidar data: a case study in Bergama, Turkey / Baris Suleymanoglu in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
PermalinkImage classification-based ground filtering of point clouds extracted from UAV-based aerial photos / Volkan Yilmaz in Geocarto international, vol 33 n° 3 (March 2018)
PermalinkNavigation des personnes aux moyens des technologies des smartphones et des données d’environnements cartographiés / Fadoua Taia Alaoui (2018)
PermalinkNew optimal smoothing scheme for improving relative and absolute accuracy of tightly coupled GNSS/SINS integration / Xiaohong Zhang in GPS solutions, vol 21 n° 3 (July 2017)
PermalinkPermalinkUsing seal trajectories in biological early warning system for real-time zone tracking / Rouaa Wannous in Ingénierie des systèmes d'information, ISI : Revue des sciences et technologies de l'information, RSTI, vol 21 n° 4 (juillet - août 2016)
PermalinkRobust locally weighted regression techniques for ground surface points filtering in mobile laser scanning three dimensional point cloud data / Abdul Nurunnabi in IEEE Transactions on geoscience and remote sensing, vol 54 n° 4 (April 2016)
PermalinkA multi-directional ground filtering algorithm for airborne LIDAR / X. Meng in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 1 (January - February 2009)
Permalink