Descripteur



Etendre la recherche sur niveau(x) vers le bas
Textural classification of remotely sensed images using multiresolution techniques / Rizwan Ahmed Ansari in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Textural classification of remotely sensed images using multiresolution techniques Type de document : Article/Communication Auteurs : Rizwan Ahmed Ansari, Auteur ; Krishna Mohan Buddhiraju, Auteur ; Avik Bhattacharya, Auteur Année de publication : 2020 Article en page(s) : pp 1580 - 1602 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] analyse texturale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] distance euclidienne
[Termes descripteurs IGN] image optique
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] texture d'image
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Multiresolution analysis (MRA) methods have been successfully used in texture analysis. Texture analysis is widely discussed in literature, but most of the methods which do not employ multiresolution strategy cannot exploit the fact that texture occurs at various spatial scales. This paper proposes a methodology to identify different classes in satellite images using texture features from newly developed multiresolution methods. The proposed method is tested on remotely sensed optical images and a Pauli RGB decomposed version of synthetic aperture radar image. The textural information is extracted at various scales and in different directions from curvelet and contourlet transforms. The results are compared with wavelet-based features. Accuracy assessment is performed and comparative analysis is carried out using minimum distance to mean, support vector machine and random forest classifiers. It is found that the proposed method shows better class discriminating power and classification capability as compared to existing wavelet-based method. Numéro de notice : A2020-618 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1581263 date de publication en ligne : 15/04/2019 En ligne : https://doi.org/10.1080/10106049.2019.1581263 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95994
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1580 - 1602[article]Comparison of two methods for multiresolution terrain modelling in GIS / Turkay Gokgoz in Geocarto international, vol 35 n° 12 ([01/09/2020])
![]()
[article]
Titre : Comparison of two methods for multiresolution terrain modelling in GIS Type de document : Article/Communication Auteurs : Turkay Gokgoz, Auteur ; Müslüm Hacar, Auteur Année de publication : 2020 Article en page(s) : pp 1360 - 1372 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] point remarquable
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] Triangulated Irregular Network
[Termes descripteurs IGN] triangulation de DelaunayRésumé : (auteur) Very important points (VIPs) and important points and edges (IPEs) methods have been compared in accordance with the TINs obtained by: (1) Delaunay triangulation using DEM points determined by VIP and (2) constrained Delaunay triangulation using DEM points and triangle edges determined by IPE. It was ensured that the number of points in each TIN was approximately equal to the number calculated by Töpfer’s formula, and that the vertical error of each TIN was less than the error calculated by Koppe’s formula. According to the results, (1) both methods are quality prioritized, (2) IPE is more sensitive to local surface changes, (3) important triangle edges determined by IPE make a significant contribution to the TIN, (4) some of the points selected by IPE are more important points than that of VIP, and (5) IPE-based TINs are more structural fidelity than VIP-based TINs. Numéro de notice : A2020-485 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1573929 date de publication en ligne : 27/02/2019 En ligne : https://doi.org/10.1080/10106049.2019.1573929 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95652
in Geocarto international > vol 35 n° 12 [01/09/2020] . - pp 1360 - 1372[article]Pansharpening: context-based generalized Laplacian pyramids by robust regression / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : Pansharpening: context-based generalized Laplacian pyramids by robust regression Type de document : Article/Communication Auteurs : Gemine Vivone, Auteur ; Stefano Marano, Auteur ; Jocelyn Chanussot, Auteur Année de publication : 2020 Article en page(s) : pp 6152 - 6167 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] fonction de transfert de modulation
[Termes descripteurs IGN] fusion d'images
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image panchromatique
[Termes descripteurs IGN] lissage de données
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] pansharpening (fusion d'images)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) Pansharpening refers to the combination of panchromatic (PAN) and multispectral (MS) images, designed to obtain a fused product retaining the fine spatial resolution of the former and the high spectral content of the latter. One of the most popular and successful approaches to pansharpening is the method known as context-based generalized Laplacian pyramid, which requires as a key ingredient for the estimation of the so-called injection coefficients. In this article, we propose the adoption of robust techniques for the estimation of the injection coefficients and detection strategies to select the clusters for which robust regression is needed, providing a suitable balancing between fusion performance and computational burden. Experimental results conducted on five real data sets acquired by the sensors QuickBird, WorldView-3, and WorldView-4, show the superiority of the proposed method with respect to current state-of-the-art pansharpening techniques. Numéro de notice : A2020-528 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2974806 date de publication en ligne : 04/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2974806 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95706
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6152 - 6167[article]Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi / Brad G. Peter in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 2 (February 2020)
![]()
[article]
Titre : Multi-Spatial Resolution Satellite and sUAS Imagery for Precision Agriculture on Smallholder Farms in Malawi Type de document : Article/Communication Auteurs : Brad G. Peter, Auteur ; Joseph P. Messina, Auteur ; Jon W. Carroll, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 107 - 119 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] agriculture de précision
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] exploitation agricole
[Termes descripteurs IGN] image Pléiades
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] image SPOT 6
[Termes descripteurs IGN] MalawiRésumé : (Auteur) A collection of spectral indices, derived from a range of remote sensing imagery spatial resolutions, are compared to on-farm measurements of maize chlorophyll content and yield at two trial farms in central Malawi to evaluate what spatial resolutions are most effective for relating multispectral images with crop status. Single and multiple linear regressions were tested for spatial resolutions ranging from 7 cm to 20 m using a small unmanned aerial system (sUAS) and satellite imagery from Planet, SPOT 6, Pléiades, and Sentinel-2. Results suggest that imagery with spatial resolutions nearer the maize plant scale (i.e., 14–27 cm) are most effective for relating spectral signals with crop health on smallholder farms in Malawi. Consistent with other studies, green-band indices were more strongly correlated with maize chlorophyll content and yield than conventional red-band indices, and multivariable models often outperformed single variable models. Numéro de notice : A2020-127 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.86.2.107 date de publication en ligne : 01/02/2020 En ligne : https://doi.org/10.14358/PERS.86.2.107 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94796
in Photogrammetric Engineering & Remote Sensing, PERS > vol 86 n° 2 (February 2020) . - pp 107 - 119[article]Forest change detection in incomplete satellite images with deep neural networks / Salman H. Khan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 9 (September 2017)
![]()
[article]
Titre : Forest change detection in incomplete satellite images with deep neural networks Type de document : Article/Communication Auteurs : Salman H. Khan, Auteur ; Xuming He, Auteur ; Fatih Porikli, Auteur ; Mohammed Bennamoun, Auteur Année de publication : 2017 Article en page(s) : pp 5407 - 5423 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse diachronique
[Termes descripteurs IGN] analyse multirésolution
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] réflectance de surface
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] retouche
[Termes descripteurs IGN] surveillance de la végétationRésumé : (Auteur) Land cover change monitoring is an important task from the perspective of regional resource monitoring, disaster management, land development, and environmental planning. In this paper, we analyze imagery data from remote sensing satellites to detect forest cover changes over a period of 29 years (1987-2015). Since the original data are severely incomplete and contaminated with artifacts, we first devise a spatiotemporal inpainting mechanism to recover the missing surface reflectance information. The spatial filling process makes use of the available data of the nearby temporal instances followed by a sparse encoding-based reconstruction. We formulate the change detection task as a region classification problem. We build a multiresolution profile (MRP) of the target area and generate a candidate set of bounding-box proposals that enclose potential change regions. In contrast to existing methods that use handcrafted features, we automatically learn region representations using a deep neural network in a data-driven fashion. Based on these highly discriminative representations, we determine forest changes and predict their onset and offset timings by labeling the candidate set of proposals. Our approach achieves the state-of-the-art average patch classification rate of 91.6% (an improvement of ~16%) and the mean onset/offset prediction error of 4.9 months (an error reduction of five months) compared with a strong baseline. We also qualitatively analyze the detected changes in the unlabeled image regions, which demonstrate that the proposed forest change detection approach is scalable to new regions. Numéro de notice : A2017-663 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2707528 En ligne : http://dx.doi.org/10.1109/TGRS.2017.2707528 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=87105
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 9 (September 2017) . - pp 5407 - 5423[article]Describing contrast across scales / Sohaib Ali Syed in ISPRS Journal of photogrammetry and remote sensing, vol 128 (June 2017)
PermalinkA robust fixed rank kriging method for improving the spatial completeness and accuracy of satellite SST products / Yuxin Zhu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)
PermalinkMTF-adjusted pansharpening approach based on coupled multiresolution decompositions / Abdelaziz Kallel in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)
PermalinkA critical comparison among pansharpening algorithms / Gemine Vivone in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
PermalinkCrop type classification by simultaneous use of satellite images of different resolutions / Mark W. Liu in IEEE Transactions on geoscience and remote sensing, vol 52 n° 6 Tome 2 (June 2014)
PermalinkA multiresolution hierarchical classification algorithm for filtering airborne LiDAR data / Chuanfa Chen in ISPRS Journal of photogrammetry and remote sensing, vol 82 (August 2013)
PermalinkDevelopment of a modified neural network-based land cover classification system using automated data selector and multiresolution remotely sensed data / S. Khorram in Geocarto international, vol 26 n° 6 (October 2011)
PermalinkUrban-trees extraction from Quickbird imagery using multiscale spectex-filtering and non-parametric classification / Y.O. Ouma in ISPRS Journal of photogrammetry and remote sensing, vol 63 n° 3 (May - June 2008)
PermalinkThe wavelet method as an alternative for reducing ionospheric effects from single-frequency GPS receivers / E.M. DE Souza in Journal of geodesy, vol 81 n° 12 (December 2007)
PermalinkAn integrated TIN and Grid method for constructing multi-resolution digital terrain models / B. Yang in International journal of geographical information science IJGIS, vol 19 n° 10 (november 2005)
Permalink