Descripteur



Etendre la recherche sur niveau(x) vers le bas
Semi-supervised joint learning for hand gesture recognition from a single color image / Chi Xu in Sensors, vol 21 n° 3 (February 2021)
![]()
[article]
Titre : Semi-supervised joint learning for hand gesture recognition from a single color image Type de document : Article/Communication Auteurs : Chi Xu, Auteur ; Yunkai Jiang, Auteur ; Jun Zhou, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 1007 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] image en couleur
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] reconnaissance de gestesRésumé : (auteur) Hand gesture recognition and hand pose estimation are two closely correlated tasks. In this paper, we propose a deep-learning based approach which jointly learns an intermediate level shared feature for these two tasks, so that the hand gesture recognition task can be benefited from the hand pose estimation task. In the training process, a semi-supervised training scheme is designed to solve the problem of lacking proper annotation. Our approach detects the foreground hand, recognizes the hand gesture, and estimates the corresponding 3D hand pose simultaneously. To evaluate the hand gesture recognition performance of the state-of-the-arts, we propose a challenging hand gesture recognition dataset collected in unconstrained environments. Experimental results show that, the gesture recognition accuracy of ours is significantly boosted by leveraging the knowledge learned from the hand pose estimation task. Numéro de notice : A2021-160 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/s21031007 date de publication en ligne : 02/02/2021 En ligne : https://doi.org/10.3390/s21031007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97076
in Sensors > vol 21 n° 3 (February 2021) . - n° 1007[article]X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data / Danfeng Hong in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
![]()
[article]
Titre : X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data Type de document : Article/Communication Auteurs : Danfeng Hong, Auteur ; Naoto Yokoya, Auteur ; Gui-Song Sia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 12 - 23 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image mixte
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] bruit blanc
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] compréhension de l'image
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] transmission de donnéesRésumé : (auteur) This paper addresses the problem of semi-supervised transfer learning with limited cross-modality data in remote sensing. A large amount of multi-modal earth observation images, such as multispectral imagery (MSI) or synthetic aperture radar (SAR) data, are openly available on a global scale, enabling parsing global urban scenes through remote sensing imagery. However, their ability in identifying materials (pixel-wise classification) remains limited, due to the noisy collection environment and poor discriminative information as well as limited number of well-annotated training images. To this end, we propose a novel cross-modal deep-learning framework, called X-ModalNet, with three well-designed modules: self-adversarial module, interactive learning module, and label propagation module, by learning to transfer more discriminative information from a small-scale hyperspectral image (HSI) into the classification task using a large-scale MSI or SAR data. Significantly, X-ModalNet generalizes well, owing to propagating labels on an updatable graph constructed by high-level features on the top of the network, yielding semi-supervised cross-modality learning. We evaluate X-ModalNet on two multi-modal remote sensing datasets (HSI-MSI and HSI-SAR) and achieve a significant improvement in comparison with several state-of-the-art methods. Numéro de notice : A2020-544 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.06.014 date de publication en ligne : 11/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.06.014 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95770
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 12 - 23[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 SL Revue Centre de documentation Revues en salle Disponible 081-2020093 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Predictive mapping with small field sample data using semi‐supervised machine learning / Fei Du in Transactions in GIS, Vol 24 n° 2 (April 2020)
![]()
[article]
Titre : Predictive mapping with small field sample data using semi‐supervised machine learning Type de document : Article/Communication Auteurs : Fei Du, Auteur ; A - Xing Zhu, Auteur ; Jing Liu, Auteur ; Lin Yang, Auteur Année de publication : 2020 Article en page(s) : pp 315 - 331 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] covariance
[Termes descripteurs IGN] échantillon
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] représentation cartographiqueRésumé : (Auteur) Existing predictive mapping methods usually require a large number of field samples with good representativeness as input to build reliable predictive models. In mapping practice, however, we often face situations when only small sample data are available. In this article, we present a semi‐supervised machine learning approach for predictive mapping in which the natural aggregation (clustering) patterns of environmental covariate data are used to supplement limited samples in prediction. This approach was applied to two soil mapping case studies. Compared with field sample only approaches (decision trees, logistic regression, and support vector machines), maps using the proposed approach can better capture the spatial variation of soil types and achieve higher accuracy with limited samples. A cross validation shows further that the proposed approach is less sensitive to the specific field sample set used and thus more robust when field sample data are small. Numéro de notice : A2020-174 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12598 date de publication en ligne : 04/12/2019 En ligne : https://doi.org/10.1111/tgis.12598 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94900
in Transactions in GIS > Vol 24 n° 2 (April 2020) . - pp 315 - 331[article]Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data / Xiuyuan Zhang in ISPRS Journal of photogrammetry and remote sensing, vol 161 (March 2020)
![]()
[article]
Titre : Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data Type de document : Article/Communication Auteurs : Xiuyuan Zhang, Auteur ; Shihong Du, Auteur ; Zhijia Zheng, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 12 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] apprentissage dirigé
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] cartographie urbaine
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] échantillonnage d'image
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] méthode heuristique
[Termes descripteurs IGN] point d'intérêt
[Termes descripteurs IGN] scène urbaineRésumé : (Auteur) Urban functional zones are basic units of urban planning and resource allocation, and contribute to a wide range of urban studies and investigations. Existing studies on functional-zone mapping with very-high-resolution (VHR) satellite images focused much on feature representations and classification techniques, but ignored zone sampling which however was fundamental to automatic zone classifications. Functional-zone sampling is much complicated and can hardly be resolved by classical sampling methods, as functional zones are complex urban scenes which consist of heterogeneous land covers and have highly abstract categories. To resolve the issue, this study presents a novel sampling paradigm, i.e., heuristic sample learning (HSL). It first proposes a sparse topic model to select representative functional zones, then uses deep forest to select confusing zones, and finally embraces Chinese restaurant process to label these selected zones. The presented method collects both representative and confusing zone samples and identifies their categories accurately, which makes the functional-zone classification process robust and the classification results accurate. Experiments conducted in Beijing indicate that HSL is effective and efficient for functional-zone sampling and classifications. Compared to traditional manual sampling, HSL reduces the time cost by 55% and improves the classification accuracy by 11.3% on average; furthermore, HSL can reduce the variation in sampling and classification results caused by different proficiency of operators. Accordingly, HSL significantly contributes to functional-zone mapping and plays an important role in urban studies. Numéro de notice : A2020-061 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.01.005 date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.01.005 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94577
in ISPRS Journal of photogrammetry and remote sensing > vol 161 (March 2020) . - pp 1 - 12[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020031 SL Revue Centre de documentation Revues en salle Disponible 081-2020033 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020032 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A double-strategy-check active learning algorithm for hyperspectral image classification / Ying Cui in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 11 (November 2019)
![]()
[article]
Titre : A double-strategy-check active learning algorithm for hyperspectral image classification Type de document : Article/Communication Auteurs : Ying Cui, Auteur ; Xiaowei Ji, Auteur ; Kai Xu, Auteur ; Liguo Wang, Auteur Année de publication : 2019 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] apprentissage semi-dirigé
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] image hyperspectraleRésumé : (Auteur) Applying limited labeled samples to improve classification results is a challenge in hyperspectral images. Active Learning (AL) and Semisupervised Learning (SSL) are two promising techniques to achieve this challenge. Combining AL with SSL is an excellent idea for hyperspectral image classification. The traditional method, such as the Collaborative Active and Semisupervised Learning algorithm (CASSL), may introduce many incorrect pseudolabels and shows premature convergence. To overcome these drawbacks, a novel framework named Double-Strategy-Check Collaborative Active and Semisupervised Learning (DSC-CASSL) is proposed in this paper. This framework combines two different AL algorithms and SSL in a collaborative mode. The double-strategy verification can gradually improve the pseudolabeling accuracy and facilitate SSL. We evaluate the performance of DSC-CASSL on four hyperspectral data sets and compare it with that of four hyperspectral image classification methods. Our results suggest that DSC-CASSL leads to consistent improvement for hyperspectral image classification. Numéro de notice : A2019-526 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.85.11.841 date de publication en ligne : 01/11/2019 En ligne : https://doi.org/10.14358/PERS.85.11.841 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94067
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 11 (November 2019)[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019111 SL Revue Centre de documentation Indéterminé Disponible PermalinkPermalinkPermalinkRandom-walker-based collaborative learning for hyperspectral image classification / Bin Sun in IEEE Transactions on geoscience and remote sensing, vol 55 n° 1 (January 2017)
PermalinkSemisupervised classification for hyperspectral image based on multi-decision labeling and deep feature learning / Xiaorui Ma in ISPRS Journal of photogrammetry and remote sensing, vol 120 (october 2016)
PermalinkObject detection in optical remote sensing images based on weakly supervised learning and high-level feature learning / Junwei Han in IEEE Transactions on geoscience and remote sensing, vol 53 n° 6 (June 2015)
PermalinkComplementarity of discriminative classifiers and spectral unmixing techniques for the interpretation of hyperspectral images / Jun Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)
PermalinkSemisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization / Zhangyang Wang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)
PermalinkSemisupervised self-learning for hyperspectral image classification / Immaculada Dopido in IEEE Transactions on geoscience and remote sensing, vol 51 n° 7 Tome 1 (July 2013)
PermalinkSemisupervised learning of hyperspectral data with unknown land-cover classes / G. Jun in IEEE Transactions on geoscience and remote sensing, vol 51 n° 1 Tome 1 (January 2013)
Permalink