Descripteur



Etendre la recherche sur niveau(x) vers le bas
Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model / Arne Nothdurft in Forest ecology and management, vol 478 ([15/12/2020])
![]()
[article]
Titre : Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] bioclimatologie
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] dendrochronologie
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] intégrale de Laplace
[Termes descripteurs IGN] Larix decidua
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] peuplement mélangé
[Termes descripteurs IGN] Picea abies
[Termes descripteurs IGN] Pinus sylvestris
[Termes descripteurs IGN] quercus sessiliflora
[Termes descripteurs IGN] série temporelle
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A novel methodological framework is presented for climate-sensitive modeling of annual radial stem increments using tree-ring width time series. The approach is based on a hierarchical Bayes model together with a distributed time lag model that take into account the effects of a series of monthly temperature and precipitation values, as well as their interactions. By using a set of random walk priors, the hierarchical Bayes model allows both the detrending of the individual time series and the regression modeling to be performed simultaneously in a single model step. The approach was applied to comprehensive tree-ring width data from Austria collected on sample plots arranged in triplets representing different mixture types. Bayesian predictions revealed that European larch (Larix decidua Mill.), Norway spruce (Picea abies (L.) H. Karst.), and Scots pine (Pinus sylvestris L.) show positive climate-related growth trends throughout higher elevation sites in Tyrol, and these trends remain unchanged under a mixed-stand scenario. At the lower Austrian sites, Norway spruce was found to show a severely negative growth trend under both the pure- and mixed-stand scenario. The increment rates of European beech (Fagus sylvatica L.) were found to have a negative climate-related trend in pure stands, and the trend diminished through an admixture of spruce or larch. The trends of European larch and sessile oak (Quercus petraea (Matt.) Liebl.) showed stationary behavior, irrespective of the mixture scenario. Scots pine data showed a positive trend at the lower elevation sites under both the pure- and mixed-stand scenario. These findings indicate that species mixing does not lower the climate-related increment fluctuations of beech, oak, pine, and spruce at lower elevation sites. Numéro de notice : A2020-625 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118497 date de publication en ligne : 07/09/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118497 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96025
in Forest ecology and management > vol 478 [15/12/2020] . - 14 p.[article]Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics / Jasper A. Slingsby in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics Type de document : Article/Communication Auteurs : Jasper A. Slingsby, Auteur ; Glenn R. Moncrieff, Auteur ; Adam M. Wilson, Auteur Année de publication : 2020 Article en page(s) : pp 15 - 25 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] biodiversité
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] incendie
[Termes descripteurs IGN] internet interactif
[Termes descripteurs IGN] Le Cap
[Termes descripteurs IGN] milieu naturel
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] Normalized Difference Vegetation Index
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] surveillance écologiqueRésumé : (auteur) Managing fire, water, biodiversity and carbon stocks can greatly benefit from early warning of changes in the state of vegetation. While near-real time tools to detect forest change based on satellite remote sensing exist, these ecosystems have relatively stable natural vegetation dynamics. Open (i.e. non-forest) ecosystems like grasslands, savannas and shrublands are more challenging as they show complex natural dynamics due to factors such as fire, postfire recovery, greater contribution of bare soil to observed vegetation indices, as well as high sensitivity to rainfall and strong seasonality. Tools to aid the management of open ecosystems are desperately required as they dominate much of the globe and harbour substantial biodiversity and carbon. We present an innovative approach that overcomes the difficulties posed by open ecosystems by using a spatio-temporal hierarchical Bayesian model that uses data on climate, topography, soils and fire history to generate ecological forecasts of the expected land surface signal under natural conditions. This allows us to monitor and detect abrupt or gradual changes in the state of an ecosystem in near-real time by identifying areas where the observed vegetation signal has deviated from the expected natural variation. We apply our approach to a case study from the hyperdiverse fire-dependent African shrubland, the fynbos of the Cape Floristic Region, a Global Biodiversity Hotspot and UNESCO World Heritage Site that faces a number of threats to vegetation health and ecosystem function. The case study demonstrates that our approach is useful for identifying a range of change agents such as fire, alien plant species invasions, drought, pathogen outbreaks and clearing of vegetation. We describe and provide our full workflow, including an interactive web application. Our approach is highly versatile, allowing us to collect data on the impacts of change agents for research in ecology and earth system science, and to predict aspects of ecosystem structure and function such as biomass, fire return interval and the influence of vegetation on hydrology Numéro de notice : A2020-349 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.017 date de publication en ligne : 05/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.017 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95231
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 15 - 25[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Mining spatiotemporal association patterns from complex geographic phenomena / Zhanjun He in International journal of geographical information science IJGIS, vol 34 n° 6 (June 2020)
![]()
[article]
Titre : Mining spatiotemporal association patterns from complex geographic phenomena Type de document : Article/Communication Auteurs : Zhanjun He, Auteur ; Jiannan Cai, Auteur ; Zhong Xie, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1162 -1 187 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] diffusion spatiale
[Termes descripteurs IGN] données localisées dynamiques
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] interaction spatiale
[Termes descripteurs IGN] modèle entité-association
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] phénomène géographique
[Termes descripteurs IGN] pollution atmosphérique
[Termes descripteurs IGN] tempêteRésumé : (auteur) Spatiotemporal association pattern mining can discover interesting interdependent relationships among various types of geospatial data. However, existing mining methods for spatiotemporal association patterns usually model geographic phenomena as simple spatiotemporal point events. Therefore, they cannot be applied to complex geographic phenomena, which continuously change their properties, shapes or locations, such as storms and air pollution. The most salient feature of such complex geographic phenomena is the geographic dynamic. To fully reveal dynamic characteristics of complex geographic phenomena and discover their associated factors, this research proposes a novel complex event-based spatiotemporal association pattern mining framework. First, a complex geographic event was hierarchically modeled and represented by a new data structure named directed spatiotemporal routes. Then, sequence mining technique was applied to discover the spatiotemporal spread pattern of the complex geographic events. An adaptive spatiotemporal episode pattern mining algorithm was proposed to discover the candidate driving factors for the occurrence of complex geographic events. Finally, the proposed approach was evaluated by analyzing the air pollution in the region of Beijing-Tianjin-Hebei. The experimental results showed that the proposed approach can well address the geographic dynamic of complex geographic phenomena, such as the spatial spreading pattern and spatiotemporal interaction with candidate driving factors. Numéro de notice : A2020-340 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2019.1566549 date de publication en ligne : 01/02/2019 En ligne : https://doi.org/10.1080/13658816.2019.1566549 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95216
in International journal of geographical information science IJGIS > vol 34 n° 6 (June 2020) . - pp 1162 -1 187[article]Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds / Zhou Guo in International journal of geographical information science IJGIS, vol 34 n° 4 (April 2020)
![]()
[article]
Titre : Using multi-scale and hierarchical deep convolutional features for 3D semantic classification of TLS point clouds Type de document : Article/Communication Auteurs : Zhou Guo, Auteur ; Chen-Chieh Feng, Auteur Année de publication : 2020 Article en page(s) : pp 661 - 680 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse multiéchelle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] modélisation 3D
[Termes descripteurs IGN] Oakland (Californie)
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Point cloud classification, which provides meaningful semantic labels to the points in a point cloud, is essential for generating three-dimensional (3D) models. Its automation, however, remains challenging due to varying point densities and irregular point distributions. Adapting existing deep-learning approaches for two-dimensional (2D) image classification to point cloud classification is inefficient and results in the loss of information valuable for point cloud classification. In this article, a new approach that classifies point cloud directly in 3D is proposed. The approach uses multi-scale features generated by deep learning. It comprises three steps: (1) extract single-scale deep features using 3D convolutional neural network (CNN); (2) subsample the input point cloud at multiple scales, with the point cloud at each scale being an input to the 3D CNN, and combine deep features at multiple scales to form multi-scale and hierarchical features; and (3) retrieve the probabilities that each point belongs to the intended semantic category using a softmax regression classifier. The proposed approach was tested against two publicly available point cloud datasets to demonstrate its performance and compared to the results produced by other existing approaches. The experiment results achieved 96.89% overall accuracy on the Oakland dataset and 91.89% overall accuracy on the Europe dataset, which are the highest among the considered methods. Numéro de notice : A2020-109 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2018.1552790 date de publication en ligne : 10/12/2018 En ligne : https://doi.org/10.1080/13658816.2018.1552790 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94711
in International journal of geographical information science IJGIS > vol 34 n° 4 (April 2020) . - pp 661 - 680[article]Assessment of salt marsh change on Assateague Island National Seashore between 1962 and 2016 / Anthony Campbell in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 3 (March 2020)
PermalinkA thematic mapping method to assess and analyze potential urban hazards and risks caused by flooding / Mohammad Khalid Hossain in Computers, Environment and Urban Systems, vol 79 (January 2020)
PermalinkPermalinkA new generation of the United States National Land Cover Database : Requirements, research priorities, design, and implementation strategies / Limin Yang in ISPRS Journal of photogrammetry and remote sensing, vol 146 (December 2018)
PermalinkA smooth curve as a fractal under the third definition / Ding Ma in Cartographica, vol 53 n° 3 (Fall 2018)
PermalinkVideo event recognition and anomaly detection by combining gaussian process and hierarchical dirichlet process models / Michael Ying Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 4 (April 2018)
PermalinkProgressive amalgamation of building clusters for map generalization based on scaling subgroups / Xianjin He in ISPRS International journal of geo-information, vol 7 n° 3 (March 2018)
PermalinkMultifractal analysis for multivariate data with application to remote sensing / Sébastien Combrexelle (2016)
PermalinkHierarchical unsupervised change detection in multitemporal hyperspectral images / S. Liu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)
PermalinkPermalink