Descripteur



Etendre la recherche sur niveau(x) vers le bas
Semi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Semi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree Type de document : Article/Communication Auteurs : Shuang Wang, Auteur ; Yanhe Guo, Auteur ; Wenqiang Hua, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8583 - 8597 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] échantillon
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) n this article, the terrain classifications of polarimetric synthetic aperture radar (PolSAR) images are studied. A novel semi-supervised method based on improved Tri-training combined with a neighborhood minimum spanning tree (NMST) is proposed. Several strategies are included in the method: 1) a high-dimensional vector of polarimetric features that are obtained from the coherency matrix and diverse target decompositions is constructed; 2) this vector is divided into three subvectors and each subvector consists of one-third of the polarimetric features, randomly selected. The three subvectors are used to separately train the three different base classifiers in the Tri-training algorithm to increase the diversity of classification; and 3) a help-training sample selection with the improved NMST that uses both the coherency matrix and the spatial information is adopted to select highly reliable unlabeled samples to increase the training sets. Thus, the proposed method can effectively take advantage of unlabeled samples to improve the classification. Experimental results show that with a small number of labeled samples, the proposed method achieves a much better performance than existing classification methods. Numéro de notice : A2020-743 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988982 date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988982 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96374
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8583 - 8597[article]A novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification / Jing Lv in Geoinformatica [en ligne], vol 24 n° 4 (October 2020)
![]()
[article]
Titre : A novel spectral–spatial based adaptive minimum spanning forest for hyperspectral image classification Type de document : Article/Communication Auteurs : Jing Lv, Auteur ; Huimin Zhang, Auteur ; Ming Yang, Auteur ; Wanqi Yang, Auteur Année de publication : 2020 Article en page(s) : pp 827 - 848 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) The classification methods based on minimum spanning forest (MSF) have yielded impressive results for hyperspectral image. However, previous methods exist several drawbacks, i.e., marker selection methods are easily affected by boundary noise pixels, dissimilarity measure methods between pixels are inaccurate, and also image segmentation process is not robust, since they have not effectively utilized spatial information. To this end, in this paper, novel gradient-based marker selection technique, dissimilarity measures, and adaptive connection weighting method are proposed by making full use of spatial information in hyperspectral image. Concretely, for a given hyperspectral image, a pixel-wise classification is firstly performed, and meanwhile the gradient map is generated by a morphology-based algorithm. Secondly, the most reliable pixels are selected as the markers from the classification map, and then the boundary noise pixels are excluded from the marker map by using the gradient map. Thirdly, several new dissimilarity measures are proposed by incorporating gradient information or probability information of pixels. Furthermore, in the growth procedure of MSF, the connection weighting between pixels is adjusted adaptively to improve the robustness of the MSF algorithm. Finally, when building the final classification map by using the majority voting rule, the labels of the training samples are used to dominate the label prediction. Experimental results are performed on two hyperspectral image sets Indian Pines and University of Pavia with different resolutions and contexts. The proposed approach yields higher classification accuracies compared to previously proposed classification methods, and provides accurate segmentation maps. Numéro de notice : A2020-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s10707-020-00403-0 date de publication en ligne : 11/05/2020 En ligne : https://doi.org/10.1007/s10707-020-00403-0 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96117
in Geoinformatica [en ligne] > vol 24 n° 4 (October 2020) . - pp 827 - 848[article]Chloroplast haplotypes of Northern red oak (Quercus rubra L.) stands in Germany suggest their origin from Northeastern Canada / Jeremias Götz in Forests, vol 11 n° 9 (September 2020)
![]()
[article]
Titre : Chloroplast haplotypes of Northern red oak (Quercus rubra L.) stands in Germany suggest their origin from Northeastern Canada Type de document : Article/Communication Auteurs : Jeremias Götz, Auteur ; Konstantin V. Krutovsky, Auteur ; Ludger Leinemann, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : n° 1025 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] Canada
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] gestion forestière durable
[Termes descripteurs IGN] quercus rubra
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Northern red oak (Quercus rubra L.) is one of the most important foreign tree species in Germany and considered as a major candidate for prospective sustainable forestry in the face of climate change. Therefore, Q. rubra was subject of many previous studies on its growth traits and attempts to infer the origin of various populations of this species using nuclear and chloroplast DNA markers. However, the exact geographic origin of German red oak stands has still not been identified. Its native range widely extends over North America, and the species can tolerate a broad range of environmental conditions. We genotyped individual trees in 85 populations distributed in Germany and North America using five chloroplast microsatellite and three novel chloroplast CAPS markers, resulting in the identification of 29 haplotypes. The new marker set enabled the identification of several new red oak haplotypes with restricted geographic origin. Some very rare haplotypes helped us narrow down the origin of Q. rubra stands in Germany, especially some stands from North Rhine-Westphalia, to the northern part of the species’ natural distribution area including the Peninsula of Nova Scotia, where the most similar haplotype composition was observed, compared to distinct German stands. Numéro de notice : A2020-751 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f11091025 date de publication en ligne : 22/09/2020 En ligne : https://doi.org/10.3390/f11091025 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96427
in Forests > vol 11 n° 9 (September 2020) . - n° 1025[article]Using OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
![]()
[article]
Titre : Using OpenStreetMap data and machine learning to generate socio-economic indicators Type de document : Article/Communication Auteurs : Daniel Feldmeyer, Auteur ; Claude Meisch, Auteur ; Holger Sauter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre aléatoire
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] chômage
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] collectivité territoriale
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] inégalité
[Termes descripteurs IGN] limite administrative
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] OpenStreetMapRésumé : (auteur) Socio-economic indicators are key to understanding societal challenges. They disassemble complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have been developed to describe sustainability, human development, vulnerability, risk, resilience and climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring. Socio-economic indicators are mostly provided by governmental institutions and are therefore limited to administrative boundaries. Furthermore, different methodological computation approaches for the same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly, the potential of OSM seems largely unexplored in this context. In this study, we used machine learning to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the predictive power of neural networks to statistical regression models, we evaluated the unhinged resources of OSM for indicator development. OSM provides prospects for monitoring across administrative boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further research is still required to, for example, determine the impact of regional and international differences in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into otherwise unknown spatial differences in social, environmental or economic inequalities. Numéro de notice : A2020-663 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090498 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.3390/ijgi9090498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96139
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 16 p.[article]Structure from motion for complex image sets / Mario Michelini in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Structure from motion for complex image sets Type de document : Article/Communication Auteurs : Mario Michelini, Auteur ; Helmut Mayer, Auteur Année de publication : 2020 Article en page(s) : pp 140 - 152 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] chambre de prise de vue numérique
[Termes descripteurs IGN] distorsion d'image
[Termes descripteurs IGN] étalonnage d'instrument
[Termes descripteurs IGN] fusion de données multisource
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] jeu de données
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] reconstruction 3D
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] structure-from-motionRésumé : (auteur) This paper presents an approach for Structure from Motion (SfM) for unorganized complex image sets. To achieve high accuracy and robustness, image triplets are employed and an (approximate) internal camera calibration is assumed to be known. The complexity of an image set is determined by the camera configurations which may include wide as well as weak baselines. Wide baselines occur for instance when terrestrial images and images from small Unmanned Aerial Systems (UAS) are combined. The resulting large (geometric/radiometric) distortions between images make image matching difficult possibly leading to an incomplete result. Weak baselines mean an insufficient distance between cameras compared to the distance of the observed scene and give rise to critical camera configurations. Inappropriate handling of such configurations may lead to various problems in triangulation-based SfM up to total failure. The focus of our approach lies on a complete linking of images even in case of wide or weak baselines. We do not rely on any additional information such as camera configurations, Global Positioning System (GPS) or an Inertial Navigation System (INS). As basis for generating suitable triplets to link the images, an iterative graph-based method is employed formulating image linking as the search for a terminal Steiner minimum tree in the line graph. SIFT (Lowe, 2004) descriptors are embedded into Hamming space for fast image similarity ranking. This is employed to limit the number of pairs to be geometrically verified by a computationally and more complex wide baseline matching method (Mayer et al., 2012). Critical camera configurations which are not suitable for geometric verification are detected by means of classification (Michelini and Mayer, 2019). Additionally, we propose a graph-based approach for the optimization of the hierarchical merging of triplets to efficiently generate larger image subsets. By this means, a complete, 3D reconstruction of the scene is obtained. Experiments demonstrate that the approach is able to produce reliable orientation for large image sets comprising wide as well as weak baseline configurations. Numéro de notice : A2020-355 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.05.020 date de publication en ligne : 12/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.05.020 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95242
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 140 - 152[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Evaluating SAR-optical sensor fusion for aboveground biomass estimation in a Brazilian tropical forest / Aline Bernarda Debastiani in Annals of forest research, vol 62 n° 1 (January - June 2019)
PermalinkOn the spatial distribution of buildings for map generalization / Zhiwei Wei in Cartography and Geographic Information Science, Vol 45 n° 6 (November 2018)
PermalinkAutomated extraction of 3D vector topographic feature line from terrain point cloud / Wei Zhou in Geocarto international, vol 33 n° 10 (October 2018)
PermalinkA deep neural network with spatial pooling (DNNSP) for 3-D point cloud classification / Zhen Wang in IEEE Transactions on geoscience and remote sensing, vol 56 n° 8 (August 2018)
PermalinkEvaluation of 10-year temporal and spatial variability in structure and growth across contrasting commercial thinning treatments in spruce-fir forests of northern Maine, USA / Christian Kuehne in Annals of Forest Science [en ligne], vol 75 n° 1 (March 2018)
PermalinkEfficient structure from motion for oblique UAV images based on maximal spanning tree expansion / San Jiang in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
Permalink3D tree modeling from incomplete point clouds via optimization and L1-MST / Jie Mei in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkReconstruction of itineraries from annotated text with an informed spanning tree algorithm / Ludovic Moncla in International journal of geographical information science IJGIS, vol 30 n° 5-6 (May - June 2016)
PermalinkPermalinkPermalink