Descripteur
Documents disponibles dans cette catégorie (22)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Comparison of different global DTMs and GGMs over Sri Lanka / Weeramuni Javana Praboni De Silva in Journal of applied geodesy, vol 17 n° 1 (January 2023)
[article]
Titre : Comparison of different global DTMs and GGMs over Sri Lanka Type de document : Article/Communication Auteurs : Weeramuni Javana Praboni De Silva, Auteur ; Herath Mudiyanselage Indika Prasanna, Auteur Année de publication : 2023 Article en page(s) : pp 29 - 38 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] géoïde altimétrique
[Termes IGN] MERIT
[Termes IGN] MNS ASTER
[Termes IGN] MNS SRTM
[Termes IGN] modèle de géopotentiel
[Termes IGN] Sri Lanka
[Vedettes matières IGN] AltimétrieRésumé : (auteur) Digital Elevation Models (DEMs) are real-world geographical databases that are important in studying many Earth related topics. Because the vertical accuracy of global DEMs differs across regions due to various reasons, acquiring reliable heights for a region using global height models is crucial. The objective of this study is to compare and assess the most reliable global height model for Sri Lanka. The official height system in Sri Lanka is the Mean Sea Level (MSL) based orthometric height system. In this study, the quality of ASTER, SRTM, NASADEM, MERIT, and DEMs compiled from digitized contour data of Sri Lanka was evaluated using the known heights of the Fundamental Benchmarks (FBMs) of Sri Lanka. In addition, recently published high-resolution Global Geopotential Models (GGMs) were used for the accuracy assessments of gravity related quantities computed using DEMs. The SGG-UGM-2 GGM, which showed the minimum STD and RMSE of geoid undulation difference was found as the best fit GGM over Sri Lanka. It was found that the NASADEM at its highest resolution, which gave the lowest RMSE of 2.954 m was the best global DEM for Sri Lanka. Numéro de notice : A2023-050 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1515/jag-2022-0026 Date de publication en ligne : 07/11/2022 En ligne : https://doi.org/10.1515/jag-2022-0026 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102376
in Journal of applied geodesy > vol 17 n° 1 (January 2023) . - pp 29 - 38[article]Detection of potential gold mineralization areas using MF-fuzzy approach on multispectral data / Tohid Nouri in Geocarto international, Vol 37 n° 17 ([20/08/2022])
[article]
Titre : Detection of potential gold mineralization areas using MF-fuzzy approach on multispectral data Type de document : Article/Communication Auteurs : Tohid Nouri, Auteur Année de publication : 2022 Article en page(s) : pp 5017 - 5040 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] altération géologique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] appariement d'images
[Termes IGN] diffraction
[Termes IGN] image multibande
[Termes IGN] Iran
[Termes IGN] logique floue
[Termes IGN] mine d'or
[Termes IGN] MNS ASTER
[Termes IGN] pixel
[Termes IGN] prospection minérale
[Termes IGN] sédiment
[Termes IGN] spectrométrieRésumé : (auteur) The northeast area of Ardabil, a city located in northwestern Iran, is one of the potential gold mineralization areas. In this study, ASTER data were used to identify the alteration events in this region. For this purpose, a novel approach was used in which the fuzzy logic was implemented to extract the co-occurrence map of the endmembers. This method revealed alterations more accurately than SID. Stream sediment samples were employed to validate the obtained results. Since these samples are alluvial, their catchment basins were determined and overlaid with the alteration maps. To the best of the authors’ knowledge, this validation approach has not been used in previous studies. The extracted alteration zones were in high conformity to the stream sediment samples. Next, X-ray diffraction (XRD) analysis and field spectrometry were used for delineation of the mineralogical phases present in the anomalous areas. Finally, the potential gold mineralization zones were identified. Numéro de notice : A2022-701 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1903575 Date de publication en ligne : 07/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1903575 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101560
in Geocarto international > Vol 37 n° 17 [20/08/2022] . - pp 5017 - 5040[article]Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping / Jwan Al-Doski in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 8 (August 2022)
[article]
Titre : Incorporation of digital elevation model, normalized difference vegetation index, and Landsat-8 data for land use land cover mapping Type de document : Article/Communication Auteurs : Jwan Al-Doski, Auteur ; Faez M. Hassan, Auteur ; Hussein Abdelwahab Mossa, Auteur ; Aus A. Najim, Auteur Année de publication : 2022 Article en page(s) : pp 507 - 516 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte d'utilisation du sol
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] données auxiliaires
[Termes IGN] image Landsat-8
[Termes IGN] Malaisie
[Termes IGN] MNS ASTER
[Termes IGN] modèle numérique de surface
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] ombre
[Termes IGN] précision de la classificationRésumé : (Auteur) Ancillary data are crucial in land use land cover (LULC) mapping process. This study goal is to investigate if adding Normalized Difference Vegetation Index (NDVI) and digital elevation model (DEM) data as ancillary data to the Landsat-8 spectral imagery (acquired on 14 April 2016) in the support vector machine (SVM ) classification process improves LULC mapping accuracy in GuaMusang, Malaysia. ENVI software was used to preprocess a single Landsat-8 image, convert it to reflectance, and calculate NDVI. ASTER-GDEM data were used to generate the DEM. The logical channel method was used to combine NDVI and DEM with Landsat-8 bands and limit the impact of shadows during SVM classification. The SVM accuracy was tested and evaluated on ancillary data and Landsat-8 spectral-based collection. The results revealed that the user's accuracy and producer's accuracy improved by 15.1% and 2.1%, for primary forest and by 17.93% and 28.86% for secondary forest, respectively. The classification reliability of the majority of LULC categories has increased significantly. Compared to SVM spectral-based set, the overall accuracy and kappa coefficient of the SVM ancillary-based set improved by 8.77% and 0.12, respectively. In conclusion, this article demonstrated that integrating DEM and NDVI data improves Landsat-8 image classification precision. Numéro de notice : A2022-805 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00082R2 Date de publication en ligne : 01/08/2022 En ligne : https://doi.org/10.14358/PERS.21-00082R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102132
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 8 (August 2022) . - pp 507 - 516[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022081 SL Revue Centre de documentation Revues en salle Disponible An approach to extracting digital elevation model for undulating and hilly terrain using de-noised stereo images of Cartosat-1 sensor / Litesh Bopche in Applied geomatics, vol 14 n° 1 (March 2022)
[article]
Titre : An approach to extracting digital elevation model for undulating and hilly terrain using de-noised stereo images of Cartosat-1 sensor Type de document : Article/Communication Auteurs : Litesh Bopche, Auteur ; Priti P. Rege, Auteur Année de publication : 2022 Article en page(s) : pp 39 - 55 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] filtrage du bruit
[Termes IGN] image ALOS
[Termes IGN] image Cartosat-1
[Termes IGN] Inde
[Termes IGN] MNS ASTER
[Termes IGN] MNS SRTM
[Termes IGN] modèle numérique de surface
[Termes IGN] modèle par fonctions rationnelles
[Termes IGN] modèle stéréoscopique
[Termes IGN] points homologuesRésumé : (auteur) A digital elevation model (DEM) is established as an essential geospatial dataset requisite for many topographical and environmental applications. The freely available DEMs have low spatial resolution (SR ≥ 30 m) and comprise considerable vertical errors. The vertical errors are worsened in the undulating and hilly or rugged terrain regions. In this research, we introduced a study to investigate the effect of the noise reduction filters on the accuracy and quality of the DEMs for undulating and hilly terrain regions. The main objectives are to extract a high-quality DEM without collecting physical data like ground control points. DEM generation using de-noised stereo images is carried out using Rational Polynomial Coefficients of Cartosat-1 sensor and Automated Tie Point (ATP) selection. The ATP selection and distribution on the stereo images play a significant role in the DEM accuracy. The present paper also provides information about the optimum number of ATPs used for different topographic conditions. The altitude value of extracted DEM through de-noised stereo images and freely accessible DEMs is compared with reference to the ground truth value of the study region. The 3-D surface profile map of the DEM is used for visual interpretation. Numéro de notice : A2022-216 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s12518-021-00412-0 Date de publication en ligne : 26/11/2021 En ligne : https://doi.org/10.1007/s12518-021-00412-0 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100086
in Applied geomatics > vol 14 n° 1 (March 2022) . - pp 39 - 55[article]Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image / Efosa Gbenga Adagbasa in Geocarto international, vol 37 n° 1 ([01/01/2022])
[article]
Titre : Application of deep learning with stratified K-fold for vegetation species discrimation in a protected mountainous region using Sentinel-2 image Type de document : Article/Communication Auteurs : Efosa Gbenga Adagbasa, Auteur ; Samuel Adelabu, Auteur ; Tom W. Okello, Auteur Année de publication : 2022 Article en page(s) : pp 142 - 162 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] distribution spatiale
[Termes IGN] espèce végétale
[Termes IGN] image Sentinel-MSI
[Termes IGN] indice de végétation
[Termes IGN] MNS ASTER
[Termes IGN] montagne
[Termes IGN] PoaceaeRésumé : (auteur) Understanding the spatial distribution of vegetation species is essential to gain knowledge on the recovery process of an ecosystem. Few studies have used deep learning and machine learning models for image processing focusing on forest/crop classification. This study, therefore, makes use of a multi-layer perceptron (MLP) deep neural network to discriminate grass species in a mountainous region using Sentinel-2 images. Vegetation indices, Sentinel-1 and ASTER DEM were combined with Sentinel-2 images to improve classification accuracy. Stratified K-fold was used to ensure balanced training and test data. The results, when compared with other commonly used machine learning models, outperformed them all. It produced a better discriminate of the grass species when ASTER DEM was combined with Sentinel-2 images, with overall F1 score of 92%. The results of the species discrimination show a general increase in increaser II species such as Eragrostis curvula and a decrease in decreaser species like Phragmites australis. Numéro de notice : A2022-301 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2019.1704070 En ligne : https://doi.org/10.1080/10106049.2019.1704070 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100378
in Geocarto international > vol 37 n° 1 [01/01/2022] . - pp 142 - 162[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2022011 RAB Revue Centre de documentation En réserve L003 Disponible Global glacier mass change by spatiotemporal analysis of digital elevation models / Romain Hugonnet (2022)PermalinkSnow cover change assessment in the upper Bhagirathi basin using an enhanced cloud removal algorithm / Mritunjay Kumar Singh in Geocarto international, vol 36 n° 20 ([01/12/2021])PermalinkComparison of digital elevation models through the analysis of geomorphic surface remnants in the Desatoya Mountains, Nevada / Bernadett Dobre in Transactions in GIS, vol 25 n° 5 (October 2021)PermalinkQuantifying coherence between TDM90, SRTM90 and ASTER90 / Umut Gunes Sefercik in Geocarto international, vol 36 n° 15 ([15/08/2021])PermalinkDetection of suitable sites for rainwater harvesting planning in an arid region using geographic information system / Hadeel Qays Hashim in Applied geomatics, vol 13 n° 2 (June 2021)PermalinkDEM resolution influences on peak flow prediction: a comparison of two different based DEMs through various rescaling techniques / Ali H. Ahmed Suliman in Geocarto international, vol 36 n° 7 ([15/04/2021])PermalinkApplication of 30-meter global digital elevation models for compensating rational polynomial coefficients biases / Amin Alizadeh Naeini in Geocarto international, vol 35 n° 12 ([01/09/2020])PermalinkAssessment of the Baspa basin glaciers mass budget using different remote sensing methods and modeling techniques / Vinay Kumar Gaddam in Geocarto international, vol 35 n° 3 ([01/03/2020])PermalinkIntegrated edge detection and terrain analysis for agricultural terrace delineation from remote sensing images / Wen Dai in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)PermalinkMODIS-based land surface temperature for climate variability and change research: the tale of a typical semi-arid to arid environment / Salahuddin M. Jaber in European journal of remote sensing, vol 53 n° 1 (2020)Permalink