Descripteur
Documents disponibles dans cette catégorie (15)



Etendre la recherche sur niveau(x) vers le bas
Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions / Xin-Ming Zhu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Impact of atmospheric correction on spatial heterogeneity relations between land surface temperature and biophysical compositions Type de document : Article/Communication Auteurs : Xin-Ming Zhu, Auteur ; Xiao-Ning Song, Auteur ; Pei Leng, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2680 - 2697 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] Chine
[Termes IGN] correction atmosphérique
[Termes IGN] hétérogénéité spatiale
[Termes IGN] image Landsat-8
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] régression
[Termes IGN] température au sol
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) Investigating the relations between land surface temperature (LST) and biophysical compositions can help the understanding of the surface biophysical process. However, there are still uncertainties in determining the impacts of biophysical compositions on LST due to the atmospheric effects. In this article, four atmospheric correction algorithms were used to correct 12 Landsat 8 images in Xi’an, Beijing, Wuhan, and Guangzhou, China, including the Atmospheric Correction for Flat Terrain (ATCOR2), Quick Atmospheric Correction (QUAC), Fast Line-of-sight Atmospheric Analysis of Spectral Hypercube (FLAASH), and Second Simulation of Satellite Signal in the Solar Spectrum (6S). Then, geodetector was used to investigate the atmospheric correction differences in the spatial heterogeneity relationships between LST and normalized difference vegetation index (NDVI), normalized difference built-up index (NDBI), and bare soil index (BSI). Results indicate that the selected composition factors were greatly improved after atmospheric correction, and the relations between LST and three factors were characterized by obvious atmospheric correction differences in four study areas. On the whole, the 6S algorithm performed the best in improving the factor values and impacting the spatial heterogeneity relations between LST and biophysical compositions, followed by FLAASH, QUAC, and ATCOR2 algorithms. Except for Wuhan, 6S, FLAASH, and QUAC algorithms significantly enhanced the correlation between LST and NDVI. However, all algorithms weakened the correlations between LST, NDVI, and BSI, except Guangzhou. These findings have been verified using the regression analysis. In addition, with geodetector, combinations of any two composition factors all had strongly enhanced impacts on LST, and a combination between NDVI and NDBI performed the strongest in most cases. Numéro de notice : A2021-219 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3002821 Date de publication en ligne : 26/06/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3002821 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97211
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2680 - 2697[article]Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data / Hemant Sahu in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Time series potential assessment for biophysical characterization of orchards and crops in a mixed scenario with Sentinel-1A SAR data Type de document : Article/Communication Auteurs : Hemant Sahu, Auteur ; Dipanwita Haldar, Auteur ; Abhishek Danodia, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1627 - 1639 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle de rétrodiffusion
[Termes IGN] polarisation
[Termes IGN] série temporelle
[Termes IGN] variable biophysique (végétation)
[Termes IGN] vergerRésumé : (auteur) Potential of Sentinel-1A SAR data was assessed for the time-series analysis of orchard biophysical parameters and crop system. The study revealed characteristics variations in the backscatter coefficient with respect to time and polarization for age in VH polarization than in VV and ratio of VV/VH polarization showing discrimination of young orchard particularly in VV polarization. The parameter of the orchard (age, DBH, canopy radius and visual height) shows a promising relationship with backscatter coefficient. Out of several regression models, VV channel responds with a fair regression coefficient of 0.54, 0.52, 0.48 and 0.44 for height with rmse of 0.5, 1.3, 0.7 and 0.6 for age, DBH, canopy radius and visual height, respectively. Multiple regression coefficient of 0.61 was observed for January 2018 in VV polarization as best date for study. These empirical relationships have potential for the inverse backscatter modelling. Numéro de notice : A2020-620 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583776 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583776 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96003
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1627 - 1639[article]Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan / Emal Wali in Remote sensing, vol 12 n° 1 (January 2020)
![]()
[article]
Titre : Combination of linear regression lines to understand the response of Sentinel-1 dual polarization SAR data with crop phenology - case study in Miyazaki, Japan Type de document : Article/Communication Auteurs : Emal Wali, Auteur ; Masahiro Tasumi, Auteur ; Masao Moriyama, Auteur Année de publication : 2020 Article en page(s) : 17 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] biomasse
[Termes IGN] coefficient de rétrodiffusion
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] indice foliaire
[Termes IGN] Japon
[Termes IGN] polarisation
[Termes IGN] régression linéaire
[Termes IGN] rizière
[Termes IGN] surveillance agricole
[Termes IGN] variable biophysique (végétation)Résumé : (auteur) This study investigated the relationship between backscattering coefficients of a synthetic aperture radar (SAR) and the four biophysical parameters of rice crops—plant height, green vegetation cover, leaf area index, and total dry biomass. A paddy rice field in Miyazaki, Japan was studied from April to July of 2018, which is the rice cultivation season. The SAR backscattering coefficients were provided by Sentinel-1 satellite. Backscattering coefficients of two polarization settings—VH (vertical transmitting, horizontal receiving) and VV (vertical transmitting, vertical receiving)—were investigated. Plant height, green vegetation cover, leaf area index, and total dry biomass were measured at ground level, on the same dates as satellite image acquisition. Polynomial regression lines indicated relationships between backscattering coefficients and plant biophysical parameters of the rice crop. The biophysical parameters had stronger relationship to VH than to VV polarization. A disadvantage of adopting polynomial regression equations is that the equation can have two biophysical parameter solutions for a particular backscattering coefficient value, which prevents simple conversion from backscattering coefficients to plant biophysical parameters. To overcome this disadvantage, the relationships between backscattering coefficients and the plant biophysical parameters were expressed using a combination of two linear regression lines, one line for the first sub-period and the other for the second sub-period during the entire cultivation period. Following this approach, all four plant biophysical parameters were accurately estimated from the SAR backscattering coefficient, especially with VH polarization, from the date of transplanting to about two months, until the mid-reproductive stage. However, backscattering coefficients saturate after two months from the transplanting, and became insensitive to the further developments in plant biophysical parameters. This research indicates that SAR can effectively and accurately monitor rice crop biophysical parameters, but only up to the mid reproductive stage. Numéro de notice : A2020-223 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12010189 Date de publication en ligne : 05/01/2020 En ligne : https://doi.org/10.3390/rs12010189 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94936
in Remote sensing > vol 12 n° 1 (January 2020) . - 17 p.[article]The process-based forest growth model 3-PG for use in forest management : A review / Rajit Gupta in Ecological modelling, vol 397 (1 April 2019)
![]()
[article]
Titre : The process-based forest growth model 3-PG for use in forest management : A review Type de document : Article/Communication Auteurs : Rajit Gupta, Auteur ; Laxmi Kant Sharma, Auteur Année de publication : 2019 Article en page(s) : pp 55 - 73 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] analyse de sensibilité
[Termes IGN] biomasse
[Termes IGN] changement climatique
[Termes IGN] croissance des arbres
[Termes IGN] gestion forestière durable
[Termes IGN] Leaf Area Index
[Termes IGN] modèle de croissance végétale
[Termes IGN] modèle de simulation
[Termes IGN] productivité
[Termes IGN] service écosystémique
[Termes IGN] teneur en eau de la végétation
[Termes IGN] variable biophysique (végétation)
[Vedettes matières IGN] Végétation et changement climatiqueMots-clés libres : 3-PG (Physiological Principles in Predicting Growth) Résumé : (Auteur) Forests are a critical resource, and need proper management in the face of dire climatic changes facing the world today. Advances in modelling system result in the formulation of numerous forest modelling approaches to provide an estimation of forests services. One such useful and straightforward forest modelling approach is process-based modelling, relying on physiological processes and biophysical parameters of forest ecosystems. It is based on parametric calculations and allometric equations, delivering crucial outputs for forest management. The dynamic 3-PG (Physiological Principles in Predicting Growth) is a process-based model (PBM) based on an ecosystem physiological process-based modelling approach. The various applications and flexible nature of the 3-PG model have resulted in its adoption and utilization over several regions of the world. The 3-PGS (Physiological Principles in Predicting Growth with Satellite) model is a modified and spatial version of the 3-PG model that took advantages of remote sensing & GIS (Geographical Information System) for estimation of biophysical variables like FAPAR (Fraction of absorbed photosynthetically active radiation), LAI (Leaf area index), and Canopy water content (CWC), which are tedious and laborious to calculate manually. The integration of remote sensing & GIS with PBMs offers insights to predict forest biomass and productivity at a regional level. Also, coupling of the 3-PG/3-PGS model with other modelling and statistical approaches in a GIS environment provides insights into the prediction of species distributions and potential disturbances due to climatic changes. The 3-PG model was originally designed for relatively homogenous forests; but with the recent development, the 3-PGmix has extended its use to mixed species forests. In this review, we have tried to emphasize the general overview, structure, applications, and efficacy of the process-based 3-PG model for forest management. In future, forests and their ecosystem services are expected to be rigorously influenced by climatic variations. Therefore, it is important to understand the role and effectiveness of the forest growth model 3-PG under the influence of climate change. The 3-PG model performs well for a diverse range of conditions for many forest types and species, and could be integrated with other models and approaches in order to widen its functions and applications. Areas such as Fertility Rating (FR), sensitivity and uncertainty of outputs to the model inputs in the 3-PG model requires attention to remove the weaker side, and to increase the effectiveness and accuracy of model outputs. In addition, the model performance can be improved by calculating its parameters from the population of interest, rather than using default values or values from extant literature. Furthermore, high-resolution remote sensing datasets and accurate input field data could increase the accuracy of the 3-PG/3-PGS model predictions at a broad regional level. In general, the simple forest growth model 3-PG delivers practical outputs, which are directly used in forest management. Additionally, the functions and applications of the 3-PG/3-PGS/3-PGmix model could be explored to deal with the impacts of climate change on forests and to ensure the sustainable management of forests. Numéro de notice : A2019-228 Affiliation des auteurs : non IGN Thématique : FORET/MATHEMATIQUE Nature : Article DOI : 10.1016/j.ecolmodel.2019.01.007 Date de publication en ligne : 12/02/2019 En ligne : https://doi.org/10.1016/j.ecolmodel.2019.01.007 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92743
in Ecological modelling > vol 397 (1 April 2019) . - pp 55 - 73[article]Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery / Lin Chen in Forests, vol 9 n° 10 (October 2018)
![]()
[article]
Titre : Estimation of forest above-ground biomass by geographically weighted regression and machine learning with Sentinel imagery Type de document : Article/Communication Auteurs : Lin Chen, Auteur ; Chunying Ren, Auteur ; Bai Zhang, Auteur ; Zongming Wang, Auteur ; Yanbiao Xi, Auteur Année de publication : 2018 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] arbre caducifolié
[Termes IGN] biomasse aérienne
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par réseau neuronal
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] image multibande
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] modèle de simulation
[Termes IGN] montagne
[Termes IGN] régression géographiquement pondérée
[Termes IGN] surveillance forestière
[Termes IGN] texture d'image
[Termes IGN] variable biophysique (végétation)Résumé : (Auteur) Accurate forest above-ground biomass (AGB) is crucial for sustaining forest management and mitigating climate change to support REDD+ (reducing emissions from deforestation and forest degradation, plus the sustainable management of forests, and the conservation and enhancement of forest carbon stocks) processes. Recently launched Sentinel imagery offers a new opportunity for forest AGB mapping and monitoring. In this study, texture characteristics and backscatter coefficients of Sentinel-1, in addition to multispectral bands, vegetation indices, and biophysical variables of Sentinal-2, based on 56 measured AGB samples in the center of the Changbai Mountains, China, were used to develop biomass prediction models through geographically weighted regression (GWR) and machine learning (ML) algorithms, such as the artificial neural network (ANN), support vector machine for regression (SVR), and random forest (RF). The results showed that texture characteristics and vegetation biophysical variables were the most important predictors. SVR was the best method for predicting and mapping the patterns of AGB in the study site with limited samples, whose mean error, mean absolute error, root mean square error, and correlation coefficient were 4 × 10−3, 0.07, 0.08 Mg·ha−1, and 1, respectively. Predicted values of AGB from four models ranged from 11.80 to 324.12 Mg·ha−1, and those for broadleaved deciduous forests were the most accurate, while those for AGB above 160 Mg·ha−1 were the least accurate. The study demonstrated encouraging results in forest AGB mapping of the normal vegetated area using the freely accessible and high-resolution Sentinel imagery, based on ML techniques. Numéro de notice : A2018-478 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/f9100582 Date de publication en ligne : 20/09/2018 En ligne : https://doi.org/10.3390/f9100582 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=91180
in Forests > vol 9 n° 10 (October 2018)[article]Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery / Jose Alan A. Castillo in ISPRS Journal of photogrammetry and remote sensing, vol 134 (December 2017)
PermalinkHyperspectral dimensionality reduction for biophysical variable statistical retrieval / Juan Pablo Rivera-Caicedo in ISPRS Journal of photogrammetry and remote sensing, vol 132 (October 2017)
PermalinkGaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval / Jochem Verrlest in ISPRS Journal of photogrammetry and remote sensing, vol 86 (December 2013)
PermalinkActive learning methods for biophysical parameter estimation / Edoardo Pasolli in IEEE Transactions on geoscience and remote sensing, vol 50 n° 10 Tome 2 (October 2012)
PermalinkUrban surface biophysical descriptors and land surface temperature variations / D. Weng in Photogrammetric Engineering & Remote Sensing, PERS, vol 72 n° 11 (November 2006)
PermalinkRobust multiple estimator systems for the analysis of biophysical parameters from remotely sensed data / Lorenzo Bruzzone in IEEE Transactions on geoscience and remote sensing, vol 43 n° 1 (January 2005)
PermalinkNormalized spectral mixture analysis for monitoring urban composition using ETM+ imagery / C. Wu in Remote sensing of environment, vol 93 n° 4 (15/12/2004)
PermalinkThe consequences of urban transformation on net primary productivity in the United States / M.L. Imhoff in Remote sensing of environment, vol 89 n° 4 (29/02/2004)
PermalinkPermalinkDocumentation abrégée sur la télédétection appliquée à l'étude de l'environnement et des ressources naturelles / Secrétariat d'état à l'environnement (13/01/1988)
Permalink