Descripteur



Etendre la recherche sur niveau(x) vers le bas
Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia / Neil Flood in International journal of applied Earth observation and geoinformation, vol 82 (October 2019)
![]()
[article]
Titre : Using a U-net convolutional neural network to map woody vegetation extent from high resolution satellite imagery across Queensland, Australia Type de document : Article/Communication Auteurs : Neil Flood, Auteur ; Fiona Watson, Auteur ; Lisa Collett, Auteur Année de publication : 2019 Article en page(s) : 15 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] bois sur pied
[Termes descripteurs IGN] Buisson
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] données d'apprentissage
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] méthode de Monte-Carlo
[Termes descripteurs IGN] mosaïque d'images
[Termes descripteurs IGN] Queensland (Australie)
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] texture d'imageRésumé : (auteur) Convolutional neural networks offer a new approach to classifying high resolution imagery. We use the U-net neural network architecture to map the presence or absence of trees and large shrubs across the Australian state of Queensland. From a state-wide mosaic of 1 m resolution 3-band Earth-i imagery, a selection of 827 squares (1 km2) are manually labeled for the presence of trees or large shrubs, and these are used to train the neural network. The training is intended to capture the textures which are primary visual cues of such vegetation. The trained neural network has an accuracy on independent data of around 90%. The resulting map over the whole of Queensland (1.73 million km2) is intended to be manually checked, and edited where necessary, to provide a high quality map of woody vegetation extent to serve a range of government policy objectives. Numéro de notice : A2019-474 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2019.101897 date de publication en ligne : 28/06/2019 En ligne : https://doi.org/10.1016/j.jag.2019.101897 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93635
in International journal of applied Earth observation and geoinformation > vol 82 (October 2019) . - 15 p.[article]Registration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information / Na Li in Photogrammetric Engineering & Remote Sensing, PERS, vol 79 n° 8 (August 2013)
![]()
[article]
Titre : Registration of aerial imagery and lidar data in desert areas using the centroids of bushes as control information Type de document : Article/Communication Auteurs : Na Li, Auteur ; Xianfeng Huang, Auteur ; Fan Zhang, Auteur ; Le Wang, Auteur Année de publication : 2013 Article en page(s) : pp 743 - 752 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] appariement de données localisées
[Termes descripteurs IGN] Buisson
[Termes descripteurs IGN] centroïde
[Termes descripteurs IGN] désert
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] Gobi, désert du
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] Ransac (algorithme)Résumé : (Auteur) Geometric registration of multiple-source data is of great value for fusion processing and is very beneficial for the research of desert ecosystems. A lidar point cloud and optical image are two typical data that need to be integrated for data assimilation and information retrieval. This paper aims to solve the registration problem of aerial imagery and airborne lidar data in desert areas where traditional registration methods have difficulties in identifying registration primitives. In many deserts, such as the Sahara in Africa and Gobi in China, we observe that there are unevenly distributed desert bushes, which can be used as cues for registration. In this paper, we propose a registration approach using the centroids of bushes as registration primitives. This approach employs similar triangles created from both centroids as the evidence for matching and verifies the registration by the RANSAC algorithm. Experiments using data taken from the Dunhuang Gobi Desert in China show the registration surface model visually, and at the same time quantifies the deviation error, which corroborates that the proposed registration method is effective and feasible in desert areas. Numéro de notice : A2013-427 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.14358/PERS.79.8.731 En ligne : https://doi.org/10.14358/PERS.79.8.731 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=32565
in Photogrammetric Engineering & Remote Sensing, PERS > vol 79 n° 8 (August 2013) . - pp 743 - 752[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2013081 RAB Revue Centre de documentation En réserve 3L Disponible