Descripteur
Documents disponibles dans cette catégorie (30)



Etendre la recherche sur niveau(x) vers le bas
DEM- and GIS-based analysis of soil erosion depth using machine learning / Kieu Anh Nguyen in ISPRS International journal of geo-information, vol 10 n° 7 (July 2021)
![]()
[article]
Titre : DEM- and GIS-based analysis of soil erosion depth using machine learning Type de document : Article/Communication Auteurs : Kieu Anh Nguyen, Auteur ; Walter Chen, Auteur Année de publication : 2021 Article en page(s) : n° 452 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes IGN] apprentissage automatique
[Termes IGN] bassin hydrographique
[Termes IGN] carte de profondeur
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] érosion
[Termes IGN] Extreme Gradient Machine
[Termes IGN] modèle de simulation
[Termes IGN] modèle numérique de surface
[Termes IGN] morphométrie
[Termes IGN] système d'information géographiqueRésumé : (auteur) Soil erosion is a form of land degradation. It is the process of moving surface soil with the action of external forces such as wind or water. Tillage also causes soil erosion. As outlined by the United Nations Sustainable Development Goal (UN SDG) #15, it is a global challenge to “combat desertification, and halt and reverse land degradation and halt biodiversity loss.” In order to advance this goal, we studied and modeled the soil erosion depth of a typical watershed in Taiwan using 26 morphometric factors derived from a digital elevation model (DEM) and 10 environmental factors. Feature selection was performed using the Boruta algorithm to determine 15 factors with confirmed importance and one tentative factor. Then, machine learning models, including the random forest (RF) and gradient boosting machine (GBM), were used to create prediction models validated by erosion pin measurements. The results show that GBM, coupled with 15 important factors (confirmed), achieved the best result in the context of root mean square error (RMSE) and Nash–Sutcliffe efficiency (NSE). Finally, we present the maps of soil erosion depth using the two machine learning models. The maps are useful for conservation planning and mitigating future soil erosion. Numéro de notice : A2021-551 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi10070452 Date de publication en ligne : 01/07/2021 En ligne : https://doi.org/10.3390/ijgi10070452 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98074
in ISPRS International journal of geo-information > vol 10 n° 7 (July 2021) . - n° 452[article]Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring / Edoardo Grottoli in Remote sensing, vol 13 n° 1 (January-1 2021)
![]()
[article]
Titre : Structure-from-motion-derived digital surface models from historical aerial photographs: A new 3D application for coastal dune monitoring Type de document : Article/Communication Auteurs : Edoardo Grottoli, Auteur ; Mélanie Biausque, Auteur ; David Rogers, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 95 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] analyse diachronique
[Termes IGN] carte de profondeur
[Termes IGN] données lidar
[Termes IGN] dune
[Termes IGN] érosion côtière
[Termes IGN] filtrage de points
[Termes IGN] image captée par drone
[Termes IGN] image numérisée
[Termes IGN] modèle numérique de surface
[Termes IGN] reconstruction 3D
[Termes IGN] semis de points
[Termes IGN] structure-from-motion
[Termes IGN] surveillance du littoralRésumé : (auteur) Recent advances in structure-from-motion (SfM) techniques have proliferated the use of unmanned aerial vehicles (UAVs) in the monitoring of coastal landform changes, particularly when applied in the reconstruction of 3D surface models from historical aerial photographs. Here, we explore a number of depth map filtering and point cloud cleaning methods using the commercial software Agisoft Metashape Pro to determine the optimal methodology to build reliable digital surface models (DSMs). Twelve different aerial photography-derived DSMs are validated and compared against light detection and ranging (LiDAR)- and UAV-derived DSMs of a vegetated coastal dune system that has undergone several decades of coastline retreat. The different studied methods showed an average vertical error (root mean square error, RMSE) of approximately 1 m, with the best method resulting in an error value of 0.93 m. In our case, the best method resulted from the removal of confidence values in the range of 0–3 from the dense point cloud (DPC), with no filter applied to the depth maps. Differences among the methods examined were associated with the reconstruction of the dune slipface. The application of the modern SfM methodology to the analysis of historical aerial (vertical) photography is a novel (and reliable) new approach that can be used to better quantify coastal dune volume changes. DSMs derived from suitable historical aerial photographs, therefore, represent dependable sources of 3D data that can be used to better analyse long-term geomorphic changes in coastal dune areas that have undergone retreat. Numéro de notice : A2021-079 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/rs13010095 Date de publication en ligne : 30/12/2020 En ligne : https://doi.org/10.3390/rs13010095 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96821
in Remote sensing > vol 13 n° 1 (January-1 2021) . - n° 95[article]Dense stereo matching strategy for oblique images that considers the plane directions in urban areas / Jianchen Liu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Dense stereo matching strategy for oblique images that considers the plane directions in urban areas Type de document : Article/Communication Auteurs : Jianchen Liu, Auteur ; Linjing Zhang, Auteur ; Zhen Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 5109 - 5116 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] appariement semi-global
[Termes IGN] bati
[Termes IGN] carte de profondeur
[Termes IGN] corrélation épipolaire dense
[Termes IGN] distorsion d'image
[Termes IGN] erreur moyenne quadratique
[Termes IGN] image oblique
[Termes IGN] perspective
[Termes IGN] planéité
[Termes IGN] zone urbaineRésumé : (auteur) The perspective distortion of oblique images has a substantial impact on dense matching, i.e., it reduces the matching precision. In this article, a strategy of dense matching in which the object plane direction is considered is proposed. According to many regular planes in urban areas, epipolar rectification with minimum distortions relative to the selected reference planes can be generated. The matching results of epipolar images relative to various reference planes are weighted and fused into a single depth map, which is a better matching result. The experimental results demonstrate that the perspective distortion has a substantial influence on the dense matching performance. The root-mean-square error (RMSE) of the flatness for horizontal objects is increased by approximately 30%, and the RMSE of the flatness for façades is increased by approximately 40%. Hence, the proposed matching strategy, in which the object plane is considered, can effectively improve the matching results. Numéro de notice : A2020-394 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2972312 Date de publication en ligne : 20/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2972312 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95390
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 5109 - 5116[article]Cartographie sémantique hybride de scènes urbaines à partir de données image et Lidar / Mohamed Boussaha (2020)
![]()
Titre : Cartographie sémantique hybride de scènes urbaines à partir de données image et Lidar Titre original : 3D hybrid urban scene semantic mapping from multi-modal data Type de document : Thèse/HDR Auteurs : Mohamed Boussaha , Auteur ; Bruno Vallet
, Directeur de thèse ; Patrick Rives, Directeur de thèse
Editeur : Champs/Marne : Université Paris-Est Année de publication : 2020 Projets : PLaTINUM / Gouet-Brunet, Valérie Note générale : bibliographie
Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy delivered by Université Paris-EstLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] apprentissage dirigé
[Termes IGN] carte de profondeur
[Termes IGN] descripteur
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] fusion de données multisource
[Termes IGN] image panoramique
[Termes IGN] maillage par triangles
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] réflectance
[Termes IGN] scène intérieure
[Termes IGN] scène urbaine
[Termes IGN] segmentation sémantique
[Termes IGN] système de numérisation mobile
[Termes IGN] texturageRésumé : (auteur) Avec la démocratisation des applications collaboratives d'assistance à la navigation et l'avènement de robots autonomes, la cartographie mobile suscite ces dernières années une attention croissante, tant dans les milieux académiques qu'industriels. La numérisation de l'environnement offre non seulement une connaissance fine et exhaustive permettant aux usagers d'anticiper et de planifier leurs déplacements, mais garantit aussi la disponibilité d'informations fiables notamment en cas d'éventuelle défaillance des capteurs visuels d'un véhicule autonome. S'agissant d'un enjeu crucial pour une navigation fiable, la cartographie mobile soulève en revanche de nombreux défis en matière de robustesse, de précision et de passage à l'échelle. Cette problématique fait appel à des méthodes qui requièrent une capacité de traitement de données massives avec une précision centimétrique tout en gérant les spécificités de l'acquisition (la variabilité du niveau de détails, des occultations et des fortes variations de luminosité).
Cette thèse porte sur le développement d'un référentiel global géolocalisé de l'environnement urbain constitué de représentations 3D géométriques, photométriques et sémantiques. Dans un premier temps, une investigation approfondie de la représentation la plus adaptée à un tel référentiel, permet une reconstruction d'une carte haute définition à large échelle sous forme d'un maillage 3D texturé. Cette représentation est mise en place par fusion multimodale d'images orientées et de balayages LiDAR géo-référencés acquis depuis une plateforme de cartographie mobile terrestre. Par la suite, nous proposons d'intégrer l'aspect sémantique au référentiel 3D reconstruit en exploitant la complémentarité entre les modalités d'acquisition photométriques et géométriques. À travers la riche littérature sur le sujet, nous identifions l'absence d'un jeu de données urbain multimodal annoté incluant un maillage texturé à large échelle. Nous abordons ce verrou par la production d'un jeu de données composé de nuages de point 3D, d'images 2D perspectives et panoramiques, de cartes de profondeur et de reflectance ainsi qu'un maillage texturé avec les annotations correspondantes à chaque modalité. Dans un second temps, nous considérons le référentiel comme un nuage de points structuré par un graphe d'adjacence. Nous introduisons une nouvelle approche de sur-segmentation par apprentissage supervisé. Cette méthode opère en deux temps: calcul de descripteurs locaux des points 3D par apprentissage profond de métrique, puis partition du nuage de points en zones uniformes, appelées superpoints. Les descripteurs sont appris de telle sorte qu'ils présentent de forts contrastes à l'interface entre objets, incitant la partition résultante à suivre leurs contours naturels. Nos expériences sur des scènes intérieures et extérieures montrent la nette supériorité de notre approche sur les méthodes de partition de nuage de points de l'état de l'art, qui ne reposaient pas jusqu'à là sur l'apprentissage machine. Nous montrons également que notre méthode peut être combinée à un algorithme de classification de superpoints pour obtenir d'excellents résultats en terme de segmentation sémantique, améliorant aussi l'état de l'art sur ce sujet. Enfin, nous étendons cette approche aux maillages texturés. Les triangles, structurés cette fois-ci par le graphe d'adjacence du maillage, sont partitionnés en groupes homogènes appelés superfacettes. À l'instar des nuages de points, des descripteurs locaux du maillage texturé sont appris de façon à ce que les frontières d'objets sémantiquement distincts présentent un contraste élevé. Ces descripteurs sont le résultat d'une fusion des descripteurs appris sur le maillage par convolution des arêtes d'une part, et des descripteurs de texture d'autre part. Les expériences réalisées sur notre jeu de données illustrent la supériorité de notre approche par rapport aux méthodes de l'état de l'art de sur-segmentation de maillage.Numéro de notice : 17674 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de doctorat : Geographical Information Sciences and technologies : UPE : 2020 Organisme de stage : LaSTIG (IGN) nature-HAL : Thèse En ligne : https://hal.archives-ouvertes.fr/tel-03276242/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98009 Enhanced 3D mapping with an RGB-D sensor via integration of depth measurements and image sequences / Bo Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 9 (September 2019)
![]()
[article]
Titre : Enhanced 3D mapping with an RGB-D sensor via integration of depth measurements and image sequences Type de document : Article/Communication Auteurs : Bo Wu, Auteur ; Xuming Ge, Auteur ; Linfu Xie, Auteur ; Wu Chen, Auteur Année de publication : 2019 Article en page(s) : pp 633 - 642 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] carte d'intérieur
[Termes IGN] carte de profondeur
[Termes IGN] cartographie 3D
[Termes IGN] cartographie et localisation simultanées
[Termes IGN] données localisées 3D
[Termes IGN] état de l'art
[Termes IGN] image RVB
[Termes IGN] intégration de données
[Termes IGN] modélisation 3D
[Termes IGN] semis de points
[Termes IGN] séquence d'images
[Termes IGN] structure-from-motionRésumé : (Auteur) State-of-the-art visual simultaneous localization and mapping (SLAM) techniques greatly facilitate three-dimensional (3D) mapping and modeling with the use of low-cost red-green-blue-depth (RGB-D) sensors. However, the effective range of such sensors is limited due to the working range of the infra-red (IR) camera, which provides depth information, and thus the practicability of such sensors in 3D mapping and modeling is limited. To address this limitation, we present a novel solution for enhanced 3D mapping using a low-cost RGB-D sensor. We carry out state-of-the-art visual SLAM to obtain 3D point clouds within the mapping range of the RGB-D sensor and implement an improved structure-from-motion (SfM) on the collected RGB image sequences with additional constraints from the depth information to produce image-based 3D point clouds. We then develop a feature-based scale-adaptive registration to merge the gained point clouds to further generate enhanced and extended 3D mapping results. We use two challenging test sites to examine the proposed method. At these two sites, the coverage of both generated 3D models increases by more than 50% with the proposed solution. Moreover, the proposed solution achieves a geometric accuracy of about 1% in a measurement range of about 20 m. These positive experimental results not only demonstrate the feasibility and practicality of the proposed solution but also its potential. Numéro de notice : A2019-415 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.85.9.633 Date de publication en ligne : 01/09/2019 En ligne : https://doi.org/10.14358/PERS.85.9.633 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93542
in Photogrammetric Engineering & Remote Sensing, PERS > vol 85 n° 9 (September 2019) . - pp 633 - 642[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2019091 SL Revue Centre de documentation Revues en salle Disponible Improved camera distortion correction and depth estimation for lenslet light field camera / Changkun Yang in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 3 (March 2019)
PermalinkPermalinkEstimation de profondeur à partir d'images monoculaires par apprentissage profond / Michel Moukari (2019)
PermalinkPermalinkPermalinkPermalinkVision-based localization with discriminative features from heterogeneous visual data / Nathan Piasco (2019)
PermalinkEMVS : Event-based Multi-View Stereo : 3D reconstruction with an event camera in real-time / Henri Rebecq in International journal of computer vision, vol 126 n° 12 (December 2018)
Permalink3D reconstruction from multi-view VHR-satellite images in MicMac / Ewelina Rupnik in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
PermalinkGlobal, dense multiscale reconstruction for a billion points / Benjamin Ummenhofer in International journal of computer vision, vol 125 n° 1-3 (December 2017)
Permalink