Descripteur
Documents disponibles dans cette catégorie (113)



Etendre la recherche sur niveau(x) vers le bas
Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach / Andreas Rienow in International journal of applied Earth observation and geoinformation, vol 108 (April 2022)
![]()
[article]
Titre : Detecting land use and land cover change on Barbuda before and after the Hurricane Irma with respect to potential land grabbing: A combined volunteered geographic information and multi sensor approach Type de document : Article/Communication Auteurs : Andreas Rienow, Auteur ; Jan Schweighöfer, Auteur ; Torben Dedring, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 102732 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] anthropisation
[Termes IGN] Antilles (îles des)
[Termes IGN] carte thématique
[Termes IGN] changement d'occupation du sol
[Termes IGN] détection de changement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données localisées des bénévoles
[Termes IGN] éclairage public
[Termes IGN] image Sentinel
[Termes IGN] image Terra-MODIS
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] tempête
[Termes IGN] utilisation du solRésumé : (auteur) Two months after the hurricanes Irma and Maria hit Barbuda, the construction of a new international airport led to accusations of degrading the Codrington Lagoon National Park and contravening the conventions of the Ramsar Program. Scientists have analyzed the aftermath with respect to historical legacies, disaster capitalism, manifestation of climate injustices and green gentrification. The main objective of this study was to quantify and allocate land use and land cover change (LULCC) in Barbuda before and after the 2017 Hurricane disasters. Remote sensing data and volunteered geographic information were analyzed to detect the potential changes in natural LULC so that human activities and the emergence of artificial surfaces could be detected. Human-induced LULCC occurred at different sites on the island, with decreased activities in Codrington, but increased and continued activities at Coco and Palmetto Points. With an accuracy of 97.1 %, we estimated a total increase of vegetated areas by 6.56 km2, and a simultaneous slight increase in roads and buildings with a total length of 249.67 km and a total area of 1.43 km2. The vegetation condition itself depict a steady decrease since 2017. New hotspots of human activity emerged on the island in the Codrington Lagoon National Park. Numéro de notice : A2022-233 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.102732 Date de publication en ligne : 02/03/2022 En ligne : https://doi.org/10.1016/j.jag.2022.102732 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100123
in International journal of applied Earth observation and geoinformation > vol 108 (April 2022) . - n° 102732[article]Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI / Clement E. Akumu in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
![]()
[article]
Titre : Urban land cover/use mapping and change detection analysis using multi-temporal Landsat OLI with Lidar-DEM and derived TPI Type de document : Article/Communication Auteurs : Clement E. Akumu, Auteur ; Sam Dennis, Auteur Année de publication : 2022 Article en page(s) : pp 243 - 253 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] carte d'occupation du sol
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] détection de changement
[Termes IGN] données multitemporelles
[Termes IGN] données topographiques
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] MNS lidar
[Termes IGN] Tennessee (Etats-Unis)
[Termes IGN] utilisation du solRésumé : (auteur) The mapping and change detection of land cover and land use are essential for urban management. The aim of this study was to map and monitor the spatial and temporal change in urban land cover and land use in Davidson County, Tennessee in the periods of 2013, 2016, and 2020. The urban land cover and land use categories were classified and mapped using Random Forest algorithm. A combination of Landsat Operational Land Imager (OLI) satellite data with Light Detection and Ranging (lidar)-Digital Elevation Model (DEM) and derived Topographic Position Index (TPI) were used in the classification and monitoring of urban land cover and land use change. The urban land cover and land use types were mapped with average overall accuracies of about 87% in 2020, 85% in 2016 and 2013. The overall accuracy increased by around 8%, 9%, and 6% in 2020, 2016, and 2013 classifications respectively when lidarDEMand derived TPIwere added to Landsat OLIsatellite data in the classification relative to standalone Landsat OLI. Total change occurred in about 63% of Davidson County between 2016 and 2020 with significant net gains and losses among land cover and land use types. This information could support land use planning. Numéro de notice : A2022-286 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00042R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00042R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100320
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 243 - 253[article]Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto / Xiaocong Xu in Geo-spatial Information Science, vol 25 n° inconnu ([01/01/2022])
![]()
[article]
Titre : Simulating multiple urban land use changes by integrating transportation accessibility and a vector-based cellular automata: a case study on city of Toronto Type de document : Article/Communication Auteurs : Xiaocong Xu, Auteur ; Dachuan Zhang, Auteur ; Xiaoping Liu, Auteur ; Jinpei Ou, Auteur ; Xinxin Wu, Auteur Année de publication : 2022 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] accessibilité
[Termes IGN] automate cellulaire
[Termes IGN] changement d'occupation du sol
[Termes IGN] durée de trajet
[Termes IGN] modèle de simulation
[Termes IGN] outil d'aide à la décision
[Termes IGN] Toronto
[Termes IGN] transport collectifRésumé : (auteur) The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes. Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy, leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types. To overcome these limitations, an Accessibility-interacted Vector-based Cellular Automata (A-VCA) model was proposed for the better simulation of realistic land use change among different urban functional types. The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process. The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto, Canada, during 2012–2016. A vector-based CA without considering the driving factor of accessibility (VCA) and a popular grid-based CA model (Future Land Use Simulation, FLUS) were also implemented for comparisons. The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature (kappa = 0.907, figure of merit = 0.283, and cumulative producer’s accuracy = 72.83% ± 1.535%). The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models, suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy. The proposed model provides new tools for a better simulation of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning. Numéro de notice : A2022-308 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/URBANISME Nature : Article DOI : 10.1080/10095020.2022.2043730 Date de publication en ligne : 16/03/2022 En ligne : https://doi.org/10.1080/10095020.2022.2043730 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100397
in Geo-spatial Information Science > vol 25 n° inconnu [01/01/2022][article]The use of Volunteer Geographic Information for producing and maintaining authoritative Land Use and Land Cover data, [Report from] EuroSDR and LandSense Workshop, November 24th - 25th 2020 - Online Conference / Ana-Maria Raimond (2022)
![]()
Titre : The use of Volunteer Geographic Information for producing and maintaining authoritative Land Use and Land Cover data, [Report from] EuroSDR and LandSense Workshop, November 24th - 25th 2020 - Online Conference Type de document : Actes de congrès Auteurs : Ana-Maria Raimond , Auteur ; Joep Crompvoets, Auteur ; Inian Moorthy, Auteur ; Clément Mallet
, Auteur ; Bénédicte Bucher
, Auteur
Editeur : Dublin : European Spatial Data Research EuroSDR Année de publication : 2022 Collection : EuroSDR Workshop report Projets : Landsense / Raimond, Ana-Maria Conférence : EuroSDR and the LandSense Project 2020, Seminar The use of Volunteer Geographic Information for producing and maintaining authoritative Land Use and Land Cover data 24/11/2020 25/11/2020 Online conference http://www.eurosdr.net/sites/default/files/uploaded_files/eurosdr_vgi4lulc.pdf Importance : 39 p. Format : 21 x 30 cm Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Bases de données localisées
[Termes IGN] cartographie collaborative
[Termes IGN] changement d'occupation du sol
[Termes IGN] données localisées des bénévoles
[Termes IGN] fusion de données
[Termes IGN] intégration de données
[Termes IGN] occupation du sol
[Termes IGN] OpenStreetMap
[Termes IGN] prototype
[Termes IGN] utilisation du sol
[Termes IGN] validation des donnéesRésumé : (Auteur) [Introduction] The report refers to the workshop that was organized on behalf of EuroSDR and the LandSense project (24-25 November 2020). LandSense aims to build a citizen observatory for Land Use and Land Cover (LULC) monitoring by proposing innovate technologies for data collection, change detection, data quality assessment and offering tools and systems to empower different communities (e.g., private companies, Non Governmental Organisation, National Mapping Agencies, research, public authorities) to monitor and report on LULC. The workshop was co-organized by the LASTIG laboratory of the University Gustave Eiffel and IGN-ENSG, the French National Mapping agency (Ana-Maria Olteanu-Raimond, Clément Mallet, Bénédicte Bucher), the Katholieke Universiteit Leuven (Joep Crompvoets), the International Institute for Applied Systems Analysis (Inian Moorthy) and EuroSDR. LULC data are necessary for different applications (e.g., urbanization growth, biodiversity conservation, climate change) in monitoring our environment at national, regional and local scales. Different European initiatives such as CORINE Land Cover, Copernicus, Urban Atlas allow the production of LULC data in vector format (i.e. feature-based LULC). The National Mapping Agencies (NMAs) also produce feature based LULC data at regional or national scales based on demand and available resources. The feature-based LULC data are generally cyclically produced every 3 to 6 years, which is not always adequate. Moreover, producing LULC data is costly and a lack of in-situ information can generate incompleteness or inaccuracies. Recent research shows that LULC databases may take advantage of the use of Volunteer Geographic Information (VGI) to produce or improve update LULC data. For example, different approaches allowing to derive LULC data from OpenStreetMap are proposed. In this context the objective of the workshop was to bring together different actors (e.g., National mapping agencies, academic communities, private companies) having experiences in feature?based LULC data production or change detection in order to 1) dress an exhaustive list of the current practices and issues in mapping feature-based LULC data and 2) share innovative approaches allowing to produce, monitor and update LULC data. [...] Note de contenu :
INTRODUCTION GENERALE
1. Introduction
1.1 Land Use and Land Cover data: specificities and challenges
1.2 VGI and citizen science for LULC monitoring
2. Session 1: Use of VGI for LULC data production
2.1 National Land Cover and Land Use Information System of Spain (SIOSE)- Coordination,
production, maintenance and VGI
2.2 A fusion data approach for integrating VGI to update and enrich authoritative LULC data
2.3 OpenStreetMap for Earth Observation (OSM4EO) land use application and benchmark
2.4 Using OpenStreetMap as a data source for training classifiers to generate LULC maps
3. Session 2: Data collection and validation
3.1 A mapping prototype for land use mapping by land users
3.2 A mobile application for collecting snow data in support to satellite remote sensing
3.3 Global land cover monitoring, validation and participation: experiences from several case studies
4. Session 3: Sustainability
4.1 Crowdsourcing reference data collection for land cover and land use mapping: Findings from Picture Pile and FotoquestGo
4.2 Land Cover Monitoring System with Sentinel-Hub and Python Machine Learning Library eo-learn. Is it possible to build a fast and cost-effective LCMS?
4.3 Regular monitoring of landscape changes with Copernicus data- The German land cover change detection service
4.4 Authentication as a Service - A LandSense contribution to improve the FAIR principle in Citizen Science
5. ConclusionNuméro de notice : 26826 Affiliation des auteurs : UGE-LASTIG+Ext (2020- ) Thématique : GEOMATIQUE Nature : Rapport sur congrès nature-HAL : DirectOuvrColl/Actes DOI : sans Date de publication en ligne : 09/05/2022 En ligne : https://hal.archives-ouvertes.fr/hal-03662950/document Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100695 Extensification and afforestation of cultivated mineral soil for climate change mitigation in Finland / Boris Tupek in Forest ecology and management, vol 501 (1 December 2021)
![]()
[article]
Titre : Extensification and afforestation of cultivated mineral soil for climate change mitigation in Finland Type de document : Article/Communication Auteurs : Boris Tupek, Auteur ; Aleski Lehtonen, Auteur ; Raisa Mäkipää, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : n° 119672 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] afforestation
[Termes IGN] Betula (genre)
[Termes IGN] boisement artificiel
[Termes IGN] changement d'occupation du sol
[Termes IGN] dioxyde de carbone
[Termes IGN] écologie forestière
[Termes IGN] Finlande
[Termes IGN] modèle de croissance végétale
[Termes IGN] Picea abies
[Termes IGN] puits de carbone
[Termes IGN] reboisement
[Termes IGN] surface cultivée
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Offsetting nation-wide CO2 emissions by carbon sinks from land use change (LUC), e.g. agricultural fields extensification and afforestation, is considered as a major climate change mitigation option. We evaluated the LUC potential for reducing emissions and creating annual soil and ecosystem carbon sinks in Finland. We used agricultural statistics, the forest growth model MOTTI, the soil carbon model Yasso07, and the RCP8.5 climate scenario. The soil carbon stock (SOC) of extensified grasslands showed on average less carbon loss than cropland, thus reducing future carbon emissions by LUC between 0.17 Mg ha−1 y-1, initially, and 0.08 Mg ha−1 y-1 after 50 years. The annual rate of such carbon gain was in comparison to SOC between 1.4‰ and 0.7‰ which is lower than proposed by the Paris 4‰ initiative for offsetting global anthropogenic CO2 emissions. Furthermore, after afforestation, estimated SOC is expected to increase above pre-LUC levels with 30 years lag. Estimated SOC sink from afforestation when compared to continuous cultivation varied depending on dominant tree species and soil fertility from between 0.19 Mg ha−1 y-1 (1.7‰ for spruce in medium fertile soil) to 0.46 Mg ha−1 y-1 (3.7‰ for silver birch in highly fertile soil). Future total soil and biomass carbon sink attributed to afforestation ranged between 1.65 and 2.44 Mg ha−1 y-1. Combined carbon sinks created by the present LUC could with 30 years lag offset annually between 0.01 and 4% of the present national net CO2 emissions in Finland. The long delay and a small scale of potential future carbon emission reduction by the LUC highlighted the importance of employing additional tools to reach the national neutrality targets due in next 15 or 30 years. Numéro de notice : A2021-744 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2021.119672 Date de publication en ligne : 22/09/2021 En ligne : https://doi.org/10.1016/j.foreco.2021.119672 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98685
in Forest ecology and management > vol 501 (1 December 2021) . - n° 119672[article]The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkAssessment and prediction of urban growth for a mega-city using CA-Markov model / Veerendra Yadav in Geocarto international, vol 36 n° 17 ([15/09/2021])
PermalinkSemantic unsupervised change detection of natural land cover with multitemporal object-based analysis on SAR images / Donato Amitrano in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 7 (July 2021)
PermalinkResolution enhancement for large-scale land cover mapping via weakly supervised deep learning / Qiutong Yu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 6 (June 2021)
PermalinkA novel class-specific object-based method for urban change detection using high-resolution remote sensing imagery / Ting Bai in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 4 (April 2021)
PermalinkAnalyse et consolidation des résultats sur les estimations de superficie du couvert forestier et de ses changements entre 2000 et 2016 en république du Congo / Suspense Averti Ifo in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkApport des images Landsat à l’étude de l’évolution de l’occupation du sol dans la plaine de Saïss au Maroc, pour la période 1987-2018 / Abdelkader El Garouani in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkCartographie de l’occupation du sol du Gabon en 2015, changements entre 2010 et 2015 / Farrel Nzigou Boucka in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkDétection des zones de dégradation et de régénération de la couverture végétale dans le sud du Sénégal à travers l'analyse des tendances de séries temporelles MODIS NDVI et des changements d'occupation des sols à partir d'images LANDSAT / Boubacar Solly in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkAssessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
Permalink