Descripteur
Termes IGN > 1-Candidats > changement d'utilisation du sol
changement d'utilisation du solVoir aussi |
Documents disponibles dans cette catégorie (59)



Etendre la recherche sur niveau(x) vers le bas
Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs / Alvin Christopher G. Varquez in Sustainable Cities and Society, vol 91 (April 2023)
![]()
[article]
Titre : Evaluating future railway-induced urban growth of twelve cities using multiple SLEUTH models with open-source geospatial inputs Type de document : Article/Communication Auteurs : Alvin Christopher G. Varquez, Auteur ; Sifan Dong, Auteur ; Shinya Hanaoka, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 104442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] gare
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] réseau ferroviaire
[Termes IGN] système d'information géographique
[Termes IGN] urbanisationRésumé : (auteur) Plausible urban growth projections aid in the understanding and treatment of multidisciplinary issues faced in society. In this work, we investigated the possible effects of train stations on urban growth by comparing urban projections from a cellular-automata-based land use change model, named SLEUTH, with versions (i.e. SLEUTsH and SLEUTsHGA introduced in this study) that can consider railway-induced urban growth and those (i.e. SLEUTH and SLEUTHGA) that do not. It was found that the influence of the railway stations on urban growth varied with time and according to each city. In general, railway stations induced urbanization in their immediate surroundings. However, edge growth, which is growth at the urban boundaries was slow in the first five years of the future prediction. As demonstrated by the higher urban growth rates simulated for the first few years in the SLEUTsH cases than the SLEUTH cases, the presence of railway stations will lead to more rapid urbanization in the 2040s. Mainly relying on publicly available GIS datasets, this work demonstrates the potential for modeling railway-induced urban growth on a global scale. The findings can be further confirmed with other cellular-automata models using a similar methodology. Numéro de notice : A2023-151 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.scs.2023.104442 Date de publication en ligne : 08/02/2023 En ligne : https://doi.org/10.1016/j.scs.2023.104442 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102824
in Sustainable Cities and Society > vol 91 (April 2023) . - n° 104442[article]HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation / Xuefeng Guan in Computers, Environment and Urban Systems, vol 99 (January 2023)
![]()
[article]
Titre : HGAT-VCA: Integrating high-order graph attention network with vector cellular automata for urban growth simulation Type de document : Article/Communication Auteurs : Xuefeng Guan, Auteur ; Weiran Xing, Auteur ; Jingbo Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 101900 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] adjacence
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] étalement urbain
[Termes IGN] hétérogénéité spatiale
[Termes IGN] modèle de simulation
[Termes IGN] Queensland (Australie)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] voisinage (relation topologique)
[Termes IGN] zone tamponRésumé : (auteur) Since urban growth results from frequent spatial interaction between urban units, adequate representation of spatial interaction is important for urban growth modeling. Among urban growth models, vector-based cellular automata (VCA) excels at expressing spatial interaction with realistic entities, and has accordingly been used extensively in recent studies. However, two issues with VCA modeling still remain: 1) inefficient manual selection of interaction targets with various neighborhood configurations; 2) inaccurate quantification of interaction intensity due to ignorance of spatial heterogeneity in entity interaction. To address these two limitations, this study proposed a novel VCA model with high-order graph attention network (HGAT-VCA). In this model, a graph structure is first built from the topology adjacency relationship between cadastral parcels. In terms of the HGAT components, the original 1st-order parcel neighborhood is extended to high-order to capture the distant dependency, while graph attention is applied to quantify the heterogeneous interaction intensity between parcels. Finally, the conversion probability obtained by HGAT is integrated with VCA to simulate urban land use change. Land use data from the Moreton Bay Region in Queensland, Australia from 2005 to 2009 are selected to verify the proposed HGAT-VCA model. Experimental results illustrate that HGAT-VCA outperforms four classical CA models and achieves the highest simulation accuracy (e.g., the increase of FoM is about 40.7%). In addition, extensive neighborhood configuration experiments show that with HGAT only tuning discrete topological order can generate similar accuracy results compared with the repetitive buffer-based neighborhood configuration, and this can significantly improve the calibration efficiency of VCA models. Numéro de notice : A2023-031 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101900 Date de publication en ligne : 19/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101900 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102163
in Computers, Environment and Urban Systems > vol 99 (January 2023) . - n° 101900[article]A data-driven framework to manage uncertainty due to limited transferability in urban growth models / Jingyan Yu in Computers, Environment and Urban Systems, vol 98 (December 2022)
![]()
[article]
Titre : A data-driven framework to manage uncertainty due to limited transferability in urban growth models Type de document : Article/Communication Auteurs : Jingyan Yu, Auteur ; Alex Hagen-Zanker, Auteur ; Naratip Santitissadeekorn, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 101892 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] estimation bayesienne
[Termes IGN] étalement urbain
[Termes IGN] Europe (géographie politique)
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] modèle stochastique
[Termes IGN] simulation dynamiqueRésumé : (auteur) The processes of urban growth vary in space and time. There is a lack of model transferability, which means that models estimated for a particular study area and period are not necessarily applicable for other periods and areas. This problem is often addressed through scenario analysis, where scenarios reflect different plausible model realisations based typically on expert consultation. This study proposes a novel framework for data-driven scenario development which, consists of three components - (i) multi-area, multi-period calibration, (ii) growth mode clustering, and (iii) cross-application. The framework finds clusters of parameters, referred to as growth modes: within the clusters, parameters represent similar spatial development trajectories; between the clusters, parameters represent substantially different spatial development trajectories. The framework is tested with a stochastic dynamic urban growth model across European functional urban areas over multiple time periods, estimated using a Bayesian method on an open global urban settlement dataset covering the period 1975–2014.
The results confirm a lack of transferability, with reduced confidence in the model over the validation period, compared to the calibration period. Over the calibration period the probability that parameters estimated specifically for an area outperforms those for other areas is 96%. However, over an independent validation period, this probability drops to 72%. Four growth modes are identified along a gradient from compact to dispersed spatial developments. For most training areas, spatial development in the later period is better characterized by one of the four modes than their own historical parameters. The results provide strong support for using identified parameter clusters as a tool for data-driven and quantitative scenario development, to reflect part of the uncertainty of future spatial development trajectories.Numéro de notice : A2022-799 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101892 Date de publication en ligne : 08/10/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101892 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101966
in Computers, Environment and Urban Systems > vol 98 (December 2022) . - n° 101892[article]The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore / Muhammad Nasar Ahmad in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 12 (December 2022)
![]()
[article]
Titre : The simulation and prediction of land surface temperature based on SCP and CA-ANN models using remote sensing data: A case study of Lahore Type de document : Article/Communication Auteurs : Muhammad Nasar Ahmad, Auteur ; Shao Zhengfeng, Auteur ; Andaleeb Yaseen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 783 - 790 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse diachronique
[Termes IGN] changement climatique
[Termes IGN] changement d'utilisation du sol
[Termes IGN] classification par réseau neuronal
[Termes IGN] image Landsat-OLI
[Termes IGN] image Landsat-TM
[Termes IGN] MNS SRTM
[Termes IGN] modèle de simulation
[Termes IGN] Pakistan
[Termes IGN] planification urbaine
[Termes IGN] température au solRésumé : (auteur) Over the last two decades, urban growth has become a major issue in Lahore, accelerating land surface temperature (LST) rise. The present study focused on estimating the current situation and simulating the future LST patterns in Lahore using remote sensing data and machine learning models. The semi-automated classification model was applied for the estimation of LST from 2000 to 2020. Then, the cellular automata-artificial neural networks (CA-ANN) module was implemented to predict future LST patterns for 2030 and 2040, respectively. Our research findings revealed that an average of 2.8 °C of land surface temperature has increased, with a mean LST value from 37.25 °C to 40.10 °C in Lahore during the last two decades from 2000 to 2020. Moreover, keeping CA-ANN simulations for land surface temperature, an increase of 2.2 °C is projected through 2040, and mean LST values will be increased from 40.1 °C to 42.31 °C by 2040. The CA-ANN model was validated for future LST simulation with an overall Kappa value of 0.82 and 86.2% of correctness for the years 2030 and 2040 using modules for land-use change evaluation. The study also indicates that land surface temperature is an important factor in environmental changes. Therefore, it is suggested that future urban planning should focus on urban rooftop plantations and vegetation conservation to minimize land surface temperature increases in Lahore. Numéro de notice : A2022-886 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.22-00071R2 Date de publication en ligne : 01/12/2022 En ligne : https://doi.org/10.14358/PERS.22-00071R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102208
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 12 (December 2022) . - pp 783 - 790[article]Impacts of spatiotemporal resolution and tiling on SLEUTH model calibration and forecasting for urban areas with unregulated growth patterns / Damilola Eyelade in International journal of geographical information science IJGIS, vol 36 n° 5 (May 2022)
![]()
[article]
Titre : Impacts of spatiotemporal resolution and tiling on SLEUTH model calibration and forecasting for urban areas with unregulated growth patterns Type de document : Article/Communication Auteurs : Damilola Eyelade, Auteur ; Keith C. Clarke, Auteur ; Ighodalo Ijagbone, Auteur Année de publication : 2022 Article en page(s) : pp 1037 - 1058 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] automate cellulaire
[Termes IGN] changement d'utilisation du sol
[Termes IGN] croissance urbaine
[Termes IGN] dalle
[Termes IGN] données spatiotemporelles
[Termes IGN] méthode de Monte-Carlo
[Termes IGN] modèle de simulation
[Termes IGN] modélisation spatiale
[Termes IGN] Nigéria
[Termes IGN] OpenStreetMapRésumé : (auteur) The SLEUTH model provides a framework for understanding land use evolution around urban areas. Calibration of SLEUTH’s behavioral coefficients can be impacted by scale and nonlinear transitions due to the SLEUTH land use deltatron module’s assumption of linear Markov change probabilities. This study attempted to establish what spatial resolution and temporal scale produces the most accurate forecasts given the linear change assumption. The impact of tiling the input data was also examined. To determine these, SLEUTH was calibrated at four spatial and three temporal scales for Ibadan, Nigeria using both untiled and tiled data. Calibration results were evaluated using accuracy metrics including Figure of Merit (FOM) and mean uncertainty. The best mix of calibration metrics (FOM 0.26) and mean uncertainty (11.64) was achieved at 30 m resolution and an intermediate temporal interval. Tiling input data led to overfitting, allowing good model fit within individual tiles but a reduction in trend recognition across land use types. Subsequently, a 2040 projection that is as accurate as possible, and scientifically justifiable given the available data, was produced. The findings provide a framework for understanding the effect of spatiotemporal scale on SLEUTH inputs that require tiling particularly for urban areas in the global south. Numéro de notice : A2022-347 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2011292 Date de publication en ligne : 16/12/2021 En ligne : https://doi.org/10.1080/13658816.2021.2011292 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100531
in International journal of geographical information science IJGIS > vol 36 n° 5 (May 2022) . - pp 1037 - 1058[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022051 SL Revue Centre de documentation Revues en salle Disponible Simulating future LUCC by coupling climate change and human effects based on multi-phase remote sensing data / Zihao Huang in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkRetours d'expérience de la mise en place d'une plateforme collaborative pour le suivi de l'usage du sol / Ana-Maria Olteanu-Raimond in Cartes & Géomatique, n° 247-248 (mars-juin 2022)
PermalinkHistorical Vltava River valley–various historical sources within web mapping environment / Jiří Krejčí in ISPRS International journal of geo-information, vol 11 n° 1 (January 2022)
PermalinkPermalinkThe spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkCalibration of cellular automata urban growth models from urban genesis onwards - a novel application of Markov chain Monte Carlo approximate Bayesian computation / Jingyan Yu in Computers, Environment and Urban Systems, vol 90 (November 2021)
PermalinkA comparison of a gradient boosting decision tree, random forests, and artificial neural networks to model urban land use changes: the case of the Seoul metropolitan area / Myung-Jin Jun in International journal of geographical information science IJGIS, vol 35 n° 11 (November 2021)
PermalinkCellular automata based land-use change simulation considering spatio-temporal influence heterogeneity of light rail transit construction: A case in Nanjing, China / Jiaming Na in ISPRS International journal of geo-information, vol 10 n° 5 (May 2021)
PermalinkDétection des zones de dégradation et de régénération de la couverture végétale dans le sud du Sénégal à travers l'analyse des tendances de séries temporelles MODIS NDVI et des changements d'occupation des sols à partir d'images LANDSAT / Boubacar Solly in Revue Française de Photogrammétrie et de Télédétection, n° 223 (mars - décembre 2021)
PermalinkCharacterizing urban land changes of 30 global megacities using nighttime light time series stacks / Qiming Zheng in ISPRS Journal of photogrammetry and remote sensing, vol 173 (March 2021)
Permalink