Descripteur



Etendre la recherche sur niveau(x) vers le bas
Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach / Frank S. Marzano in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Coastal water remote sensing from sentinel-2 satellite data using physical, statistical, and neural network retrieval approach Type de document : Article/Communication Auteurs : Frank S. Marzano, Auteur ; Michele Iacobelli, Auteur ; Massimo Orlandi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 915 - 928 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Adriatique, mer
[Termes descripteurs IGN] bathymétrie
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] correction atmosphérique
[Termes descripteurs IGN] couleur de l'océan
[Termes descripteurs IGN] eaux côtières
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] incertitude spectrale
[Termes descripteurs IGN] matière organique
[Termes descripteurs IGN] Méditerranée, mer
[Termes descripteurs IGN] réseau neuronal artificielRésumé : (auteur) Recent optical remote sensing satellite missions, such as Sentinel-2 with the MultiSpectral Imager (MSI) onboard, allow the estimation of coastal water key parameters with very high spatial resolutions (down to 10 m). In this article, multiple approaches are proposed for retrieving chlorophyll-a (Chl-a) and total suspended matter (TSM) along the Adriatic and Tyrrhenian coasts in Italy, using both empirical and model-based frameworks to design regressive and neural network (NN) estimation methods. The latter proves to be more accurate on a regional scale, where standard ocean color physical models exhibit high uncertainty in their local parameterization due to the complex spectral characteristics of the observed scene. Retrieval results are encouraging for Chl-a with a coefficient of determination R2 up to 0.72 with a root-mean-square error (RMSE) of 0.33 mg m−3 , using an empirical NN. The TSM algorithms exhibit higher uncertainty, mainly due to scarcity of in situ measurements and model parameterizations, with R2=0.52 and RMSE = 1.95 g/m 3 using NNs. The bio-optical model, used for the development of model-based algorithms, shows some inadequacies in representing the inherent and apparent optical properties for the case study areas, especially considering the different spectral features between the oligotrophic Tyrrhenian Sea and the eutrophic Adriatic Sea. This study confirms the potential of Sentinel-2 MSI products for coastal water monitoring, but it also highlights key issues to be further tackled such as the atmospheric correction impact, the need of reliable in situ measurements, and possible bathymetry effects near the shores. Numéro de notice : A2021-110 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2980941 date de publication en ligne : 09/12/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2980941 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96912
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 915 - 928[article]Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization / Ning Liu in Remote sensing, vol 12 n° 17 (September 2020)
![]()
[article]
Titre : Analysis of chlorophyll concentration in potato crop by coupling continuous wavelet transform and spectral variable optimization Type de document : Article/Communication Auteurs : Ning Liu, Auteur ; Zizheng Xing, Auteur ; Ruomei Zhao, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 22 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spectrale
[Termes descripteurs IGN] azote
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] coefficient de corrélation
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] étalonnage de modèle
[Termes descripteurs IGN] pomme de terre
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] régression des moindres carrés partiels
[Termes descripteurs IGN] transformation en ondelettesRésumé : (auteur) The analysis of chlorophyll concentration based on spectroscopy has great importance for monitoring the growth state and guiding the precision nitrogen management of potato crops in the field. A suitable data processing and modeling method could improve the stability and accuracy of chlorophyll analysis. To develop such a method, we collected the modelling data by conducting field experiments at the tillering, tuber-formation, tuber-bulking, and tuber-maturity stages in 2018. A chlorophyll analysis model was established using the partial least-square (PLS) algorithm based on original reflectance, standard normal variate reflectance, and wavelet features (WFs) under different decomposition scales (21–210, Scales 1–10), which were optimized by the competitive adaptive reweighted sampling (CARS) algorithm. The performances of various models were compared. The WFs under Scale 3 had the strongest correlation with chlorophyll concentration with a correlation coefficient of −0.82. In the model calibration process, the optimal model was the Scale3-CARS-PLS, which was established based on the sensitive WFs under Scale 3 selected by CARS, with the largest coefficient of determination of calibration set (R2c) of 0.93 and the smallest R2c−R2cv value of 0.14. In the model validation process, the Scale3-CARS-PLS model had the largest coefficient of determination of validation set (R2v) of 0.85 and the smallest root–mean–square error of cross-validation (RMSEV) value of 2.77 mg/L, demonstrating good prediction capability of chlorophyll concentration. Finally, the analysis performance of the Scale3-CARS-PLS model was measured using the testing data collected in 2020; the R2 and RMSE values were 0.69 and 3.36 mg/L, showing excellent applicability. Therefore, the Scale3-CARS-PLS model could be used to analyze chlorophyll concentration. This study indicated the best decomposition scale of continuous wavelet transform and provided an important support method for chlorophyll analysis in the potato crops. Numéro de notice : A2020-600 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.3390/rs12172826 date de publication en ligne : 31/08/2020 En ligne : https://doi.org/10.3390/rs12172826 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95950
in Remote sensing > vol 12 n° 17 (September 2020) . - 22 p.[article]A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images / Heng Lyu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 9 (September 2020)
![]()
[article]
Titre : A novel algorithm to estimate phytoplankton carbon concentration in inland lakes using Sentinel-3 OLCI images Type de document : Article/Communication Auteurs : Heng Lyu, Auteur ; Zhiqian Yang, Auteur ; Lei Shi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 6512 - 6523 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] corrélation
[Termes descripteurs IGN] image Sentinel-OLCI
[Termes descripteurs IGN] lac
[Termes descripteurs IGN] plancton
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] série temporelle
[Termes descripteurs IGN] teneur en carboneRésumé : (auteur) Phytoplankton carbon, an important biogeochemical and ecological parameter, plays a critical role in the carbon cycle and in global warming reduction. Estimation of phytoplankton carbon in inland waters on a large scale using remote sensing is useful for understanding, evaluating, and monitoring the carbon dynamics, and, in particular, for determining the spatial–temporal variation of primary production in inland waters. In a correlation analysis of the phytoplankton carbon concentration and water components, the result revealed no significant correlation between the chlorophyll-a concentration and phytoplankton carbon concentration in inland waters. However, the absorption peak height of particles at 675 nm, which is defined as the absorption at 675 nm subtracted by that at 660 nm, was found to be closely correlated with the phytoplankton carbon concentration. Thus, the absorption peak height of particles at 675 nm could be used as an indicator of the phytoplankton carbon concentration. A semianalytical method based on the remote-sensing reflectance in Sentinel-3 Ocean and Land Color Instrument (OLCI) bands 8, 9, and 17 was developed to derive the absorption peak of particles at a wavelength of 675 nm. Finally, an algorithm for estimating the phytoplankton carbon concentration in inland waters using OLCI bands 8, 9, and 17 was constructed. From 2013 to 2018, eight field campaigns were conducted in inland lakes in different seasons, and the optical properties, optically active water components, and phytoplankton carbon concentrations were obtained. An assessment of its accuracy using an independent data set demonstrated that the algorithm performance is acceptable (mean absolute percentage error, 48.6%, and root mean square error, 0.36 mg/L). As a demonstration, the algorithm was successfully applied to map the phytoplankton carbon concentration in Taihu Lake and Chaohu Lake, China, using OLCI images acquired on December 5, 2017, and August 5, 2018 and December 8, 2... Numéro de notice : A2020-531 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2977080 date de publication en ligne : 12/03/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2977080 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95714
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 9 (September 2020) . - pp 6512 - 6523[article]Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa / Cecilia Masemola in ISPRS Journal of photogrammetry and remote sensing, vol 166 (August 2020)
![]()
[article]
Titre : Towards a semi-automated mapping of Australia native invasive alien Acacia trees using Sentinel-2 and radiative transfer models in South Africa Type de document : Article/Communication Auteurs : Cecilia Masemola, Auteur ; Moses Azong Cho, Auteur ; Abel Ramoelo, Auteur Année de publication : 2020 Article en page(s) : pp 153 - 168 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] Acacia (genre)
[Termes descripteurs IGN] Afrique du sud (état)
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] cartographie automatique
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] distribution du coefficient de réflexion bidirectionnelle BRDF
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] espèce exotique envahissante
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] réflectance
[Termes descripteurs IGN] surveillance de la végétationRésumé : (auteur) Invasive alien plants (IAPs) threaten biodiversity and critical ecosystem services worldwide. There is, therefore, an urgent need to develop intervention measures to control the spread of IAPs. Efforts to control and monitor the spread of IAPs would require their current and detailed distribution over a large geographic area. Recently launched multispectral instrument on-board Sentinel-2 provides free data with good spatiotemporal and spectral resolution, compared to Landsat datasets. The Sentinel-2 dataset, therefore, can be a useful source of the IAPs spatial information required for detection and monitoring purposes. We combined Sentinel-2 data with a radiative transfer model to discriminate IAPs (Acacia mearnsii and Acacia dealbata) from surrounding native tree species in Van Reenen, KwaZulu-Natal, South Africa. The forward mode of combined PROSPECT leaf optical properties model and SAIL canopy bidirectional reflectance model, also referred to as PROSAIL was used to simulate reflectance corresponding to bands of Sentinel-MSI, while the PROSAIL model inversion retrieved leaf area index (LAI) and canopy chlorophyll contents (CCC) of the IAPs and native species. Both reflectance and retrieved properties were used to map the distribution of the species within the study area. Our results showed that A. mearnsii and A. dealbata could be accurately discriminated from the surrounding native trees using integrated PROSAIL Sentinel-2 based model. We found that CCC– and LAI-based (% accuracy = 92.8%, 91.4% for CCC and LAI, respectively) modelling produced a higher classification accuracy than field sampling-based modelling (Accuracy = 90.2% (IAP), 82.2% (NAT) and kappa coefficient = 0.84 (IAP), 0.78 (NAT)). Simulated bands corresponding to Sentinel-2 data, on the other hand, produced species maps comparable to field sampling-based maps. Overall, the integrated PROSAIL Sentinel-2 inversion approach proved suitable for detecting and mapping IAPs over a large area. Due to the high spatiotemporal coverage of Sentinel-2, satellite images, the model developed showed the potential to contribute to the IAPs monitoring systems. Numéro de notice : A2020-352 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.009 date de publication en ligne : 13/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.009 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95235
in ISPRS Journal of photogrammetry and remote sensing > vol 166 (August 2020) . - pp 153 - 168[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020081 SL Revue Centre de documentation Revues en salle Disponible 081-2020083 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020082 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Footprint determination of a spectroradiometer mounted on an unmanned aircraft system / Deepak Gautam in IEEE Transactions on geoscience and remote sensing, vol 58 n° 5 (May 2020)
![]()
[article]
Titre : Footprint determination of a spectroradiometer mounted on an unmanned aircraft system Type de document : Article/Communication Auteurs : Deepak Gautam, Auteur ; Arko Lucieer, Auteur ; Juliane Bendig, Auteur Année de publication : 2020 Article en page(s) : pp 3085 - 3096 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] capteur aérien
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] drone
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] empreinte
[Termes descripteurs IGN] fluorescence
[Termes descripteurs IGN] géoréférencement
[Termes descripteurs IGN] photosynthèse
[Termes descripteurs IGN] point d'appui
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] spectroradiomètreRésumé : (auteur) Unmanned aircraft system (UAS)-mounted spectroradiometers offer a new capability to measure spectral reflectance and solar-induced chlorophyll fluorescence at detailed canopy scales. This capability offers potential for upscaling and comparison with airborne and space-borne observations [e.g., the upcoming European Space Agency (ESA) Fluorescence Explorer (FLEX) satellite mission]. In this respect, the accurate spatial characterization and georeferencing of the UAS acquisition footprints are essential to unravel the origin and spatial variability of optical signals acquired within the extent of airborne/satellite pixels. In this article, we present and validate a novel algorithm to georeference the footprint extent of a nonimaging spectroradiometer mounted on a multirotor UAS platform. We used information about the spectroradiometer position and orientation during flight and about topography of observed terrain to calculate the footprint geolocation. In a recursive process, the field of view (FOV) of the spectroradiometer projected on the ground. Multiple FOV ground projections retrieved during a spectroradiometer reading (i.e., a single integration time) were aggregated to calculate the footprint extent. The spatial accuracy of the footprint geolocation was validated by applying the georeferencing algorithm on checkpoint pixels of image acquired with a comounted digital camera. Geolocations of the checkpoint pixels, which served as a proxy for the spectroradiometer footprint, were successfully compared with surveyed ground checkpoints. Finally, the spectral and radiometric quality of UAS-acquired reflectance signatures was compared with ground-measured reflectance of four natural targets (three different types of grass and a bare soil), and a strong agreement was observed. Numéro de notice : A2020-233 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2947703 date de publication en ligne : 06/11/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2947703 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94978
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 5 (May 2020) . - pp 3085 - 3096[article]Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
PermalinkPermalinkTélédétection multispectrale et hyperspectrale des eaux littorales turbides / Morgane Larnicol (2018)
PermalinkImproved atmospheric correction and chlorophyll-a remote sensing models for turbid waters in a dusty environment / Maryam R. Al Shehhi in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkEvaluation de variables limnologiques grâce à des images Landsat / Danielle Teixeira Alves Da Silva in Géomatique expert, n° 118 (septembre - octobre 2017)
PermalinkUtilisation des données des capteurs MODIS et SPOT-VGT pour l'analyse de la dynamique des feux dans deux territoires (réserve protégée et unités pastorales) au Ferlo (Sénégal) / Mamadou Adama Sarr in Photo interpretation, European journal of applied remote sensing, vol 51 n° 2 (juin 2015)
PermalinkDeriving Predictive relationships of carotenoid content at the canopy level in a conifer forest using hyperspectral imagery and model simulation / Rocío Hernández-Clemente in IEEE Transactions on geoscience and remote sensing, vol 52 n° 8 Tome 2 (August 2014)
PermalinkLaboratory measurements of plant drying: Implications to estimate moisture content from radiative transfer models in two temperate species / Sara Jurdao in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 5 (May 2014)
PermalinkEstimation of higher chlorophylla concentrations using field spectral measurement and HJ-1A hyperspectral satellite data in Dianshan Lake, China / Liguo Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 88 (February 2014)
PermalinkGaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval / Jochem Verrlest in ISPRS Journal of photogrammetry and remote sensing, vol 86 (December 2013)
Permalink