Descripteur
Termes descripteurs IGN > 1- Candidats > classification à base de connaissances
classification à base de connaissancesSynonyme(s)classification par système expert |



Etendre la recherche sur niveau(x) vers le bas
A higher order conditional random field model for simultaneous classification of land cover and land use / Lena Albert in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
![]()
[article]
Titre : A higher order conditional random field model for simultaneous classification of land cover and land use Type de document : Article/Communication Auteurs : Lena Albert, Auteur ; Franz Rottensteiner, Auteur ; Christian Heipke, Auteur Année de publication : 2017 Article en page(s) : pp 63 - 80 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] prise en compte du contexte
[Termes descripteurs IGN] relation sémantique
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) We propose a new approach for the simultaneous classification of land cover and land use considering spatial as well as semantic context. We apply a Conditional Random Fields (CRF) consisting of a land cover and a land use layer. In the land cover layer of the CRF, the nodes represent superpixels; in the land use layer, the nodes correspond to objects from a geospatial database. Intralayer edges of the CRF model spatial dependencies between neighbouring image sites. All spatially overlapping sites in both layers are connected by interlayer edges, which leads to higher order cliques modelling the semantic relation between all land cover and land use sites in the clique. A generic formulation of the higher order potential is proposed. In order to enable efficient inference in the two-layer higher order CRF, we propose an iterative inference procedure in which the two classification tasks mutually influence each other. We integrate contextual relations between land cover and land use in the classification process by using contextual features describing the complex dependencies of all nodes in a higher order clique. These features are incorporated in a discriminative classifier, which approximates the higher order potentials during the inference procedure. The approach is designed for input data based on aerial images. Experiments are carried out on two test sites to evaluate the performance of the proposed method. The experiments show that the classification results are improved compared to the results of a non-contextual classifier. For land cover classification, the result is much more homogeneous and the delineation of land cover segments is improved. For the land use classification, an improvement is mainly achieved for land use objects showing non-typical characteristics or similarities to other land use classes. Furthermore, we have shown that the size of the superpixels has an influence on the level of detail of the classification result, but also on the degree of smoothing induced by the segmentation method, which is especially beneficial for land cover classes covering large, homogeneous areas. Numéro de notice : A2017-510 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2017.04.006 En ligne : https://doi.org/10.1016/j.isprsjprs.2017.04.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86456
in ISPRS Journal of photogrammetry and remote sensing > vol 130 (August 2017) . - pp 63 - 80[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2017081 RAB Revue Centre de documentation En réserve 3L Disponible 081-2017083 DEP-EXM Revue MATIS Dépôt en unité Exclu du prêt 081-2017082 DEP-EAF Revue Nancy Dépôt en unité Exclu du prêt A novel MKL model of integrating LiDAR data and MSI for urban area classification / Yanfeng Gu in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)
![]()
[article]
Titre : A novel MKL model of integrating LiDAR data and MSI for urban area classification Type de document : Article/Communication Auteurs : Yanfeng Gu, Auteur ; Qingwang Wang, Auteur ; Xiuping Jia, Auteur ; Jón Alti, Auteur Année de publication : 2015 Article en page(s) : pp 5312 - 5326 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] classificateur
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image spectrale
[Termes descripteurs IGN] milieu urbainRésumé : (Auteur) A novel multiple-kernel learning (MKL) model is proposed for urban classification to integrate heterogeneous features (HF-MKL) from two data sources, i.e., spectral images and LiDAR data. The features include spectral, spatial, and elevation attributes of urban objects from the two data sources. With these heterogeneous features (HFs), the new MKL model is designed to carry out feature fusion that is embedded in classification. First, Gaussian kernels with different bandwidths are used to measure the similarity of samples on each feature at different scales. Then, these multiscale kernels with different features are integrated using a linear combination. In the combination, the weights of the kernels with different features are determined by finding a projection based on the maximum variance. This way, the discriminative ability of the HFs is exploited at different scales and is also integrated to generate an optimal combined kernel. Finally, the optimization of the conventional support vector machine with this kernel is performed to construct a more effective classifier. Experiments are conducted on two real data sets, and the experimental results show that the HF-MKL model achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared with several state-of-the-art algorithms. Numéro de notice : A2015-752 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2015.2421051 date de publication en ligne : 07/05/2015 En ligne : https://doi.org/10.1109/TGRS.2015.2421051 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78742
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 10 (October 2015) . - pp 5312 - 5326[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015101 SL Revue Centre de documentation Revues en salle Disponible An intelligent spatial proximity system using neurofuzzy classifiers and contextual information / F. Barouni in Geomatica [en ligne], vol 69 n° 3 (september 2015)
![]()
[article]
Titre : An intelligent spatial proximity system using neurofuzzy classifiers and contextual information Type de document : Article/Communication Auteurs : F. Barouni, Auteur ; Bernard Moulin, Auteur Année de publication : 2015 Article en page(s) : pp 285 - 296 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes d'information géographique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] classification floue
[Termes descripteurs IGN] implémentation (informatique)
[Termes descripteurs IGN] relation spatialeRésumé : (auteur) Dans cet article, nous proposons une approche novatrice pour discuter de la proximité spatiale. L'approche est basée sur l'information contextuelle et utilise une classification neuro-floue pour traiter l'aspect d'incertitude de la proximité. Les systèmes neuro-flous consistent en une combinaison de réseaux neuronaux et de systèmes flous et incorporent les avantages des deux techniques. Même si les systèmes flous sont concentrés sur la représentation des connaissances, ils ne permettent pas l'estimation des fonctions d'appartenance. Inversement, les réseaux neuronaux utilisent de puissantes techniques d'apprentissage, mais ne sont pas capables d'expliquer comment les résultats sont obtenus. Les systèmes neuro-flous bénéficient des deux techniques en utilisant des données d'apprentissage pour générer les fonctions d'appartenance et en faisant appel à des règles floues pour représenter les connaissances spécialisées. En outre, l'information contextuelle est collectée à partir d'une base de connaissances. La classification neuro-floue est utilisée pour calculer les paramètres des fonctions d'appartenance des quantificateurs flous de relations spatiales. La solution complète que nous proposons est intégrée à un SIG, ce qui l'améliore grâce au raisonnement de proximité. Notre approche est utilisée dans le domaine des télécommunications et surtout dans les systèmes de surveillance par fibre optique. Dans de tels systèmes, un utilisateur doit qualifier la distance entre les événements rapportés par des capteurs et les objets voisins de l'environnement pour former des modèles spatiotemporels. Ces modèles sont définis pour aider les utilisateurs à prendre des décisions telles que l'optimisation de l'affectation des équipes d'urgence. Numéro de notice : A2015-666 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article En ligne : http://pubs.cig-acsg.ca/doi/pdfplus/10.5623/cig2015-303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=78275
in Geomatica [en ligne] > vol 69 n° 3 (september 2015) . - pp 285 - 296[article]Semisupervised transfer component analysis for domain adaptation in remote sensing image classification / Giona Matasci in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)
[article]
Titre : Semisupervised transfer component analysis for domain adaptation in remote sensing image classification Type de document : Article/Communication Auteurs : Giona Matasci, Auteur ; Michele Volpi, Auteur ; Mikhail Kanevski, Auteur ; et al., Auteur Année de publication : 2015 Article en page(s) : pp 3550 - 3564 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] classification automatique
[Termes descripteurs IGN] découverte de connaissances
[Termes descripteurs IGN] extraction automatique
[Termes descripteurs IGN] méthode fondée sur le noyau
[Termes descripteurs IGN] occupation du solRésumé : (Auteur) In this paper, we study the problem of feature extraction for knowledge transfer between multiple remotely sensed images in the context of land-cover classification. Several factors such as illumination, atmospheric, and ground conditions cause radiometric differences between images of similar scenes acquired on different geographical areas or over the same scene but at different time instants. Accordingly, a change in the probability distributions of the classes is observed. The purpose of this work is to statistically align in the feature space an image of interest that still has to be classified (the target image) to another image whose ground truth is already available (the source image). Following a specifically designed feature extraction step applied to both images, we show that classifiers trained on the source image can successfully predict the classes of the target image despite the shift that has occurred. In this context, we analyze a recently proposed domain adaptation method aiming at reducing the distance between domains, Transfer Component Analysis, and assess the potential of its unsupervised and semisupervised implementations. In particular, with a dedicated study of its key additional objectives, namely the alignment of the projection with the labels and the preservation of the local data structures, we demonstrate the advantages of Semisupervised Transfer Component Analysis. We compare this approach with other both linear and kernel-based feature extraction techniques. Experiments on multi- and hyperspectral acquisitions show remarkable cross- image classification performances for the considered strategy, thus confirming its suitability when applied to remotely sensed images. Numéro de notice : A2015-319 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=76570
in IEEE Transactions on geoscience and remote sensing > vol 53 n° 7 (July 2015) . - pp 3550 - 3564[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2015071 RAB Revue Centre de documentation En réserve 3L Disponible A fuzzy spatial reasoner for multi-scale GEOBIA ontologies / Argyros Argyridis in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 6 (June 2015)
[article]
Titre : A fuzzy spatial reasoner for multi-scale GEOBIA ontologies Type de document : Article/Communication Auteurs : Argyros Argyridis, Auteur ; Demetre P. Argialas, Auteur Année de publication : 2015 Article en page(s) : pp 491 - 498 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] classification à base de connaissances
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] image Quickbird
[Termes descripteurs IGN] objet géographique
[Termes descripteurs IGN] ontologie
[Termes descripteurs IGN] OWL
[Termes descripteurs IGN] PostgreSQL
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] toitRésumé : (auteur) In Geographic Object-Based Image Analysis (GEOBIA), an image is partitioned into objects by a segmentation algorithm. These objects are then classified into semantic categories based on unsupervised/ supervised methods, or knowledge-based methods, such as an ontology. The aim of this paper was to develop a SPatial Ontology Reasoner (SPOR) to allow the development of GEOBIA ontologies by employing fuzzy, spatial, and multi-scale representations, with time efficiency. An enhanced version of the Web Ontology Language 2 (OWL 2) with fuzzy representations was adopted and expanded to represent fuzzy spatial relationships within the framework of GEOBIA. Segmentation results are stored within PostgreSQL. An ontology described the class/subclass hierarchy and class definitions. SPOR integrated PostgreSQL and the ontology, to classify the objects. To demonstrate the framework, a QuickBird image was employed for building extraction. Accuracy assessment indicated that 87 percent of building rooftops were detected. Numéro de notice : A2015-979 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80062
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 6 (June 2015) . - pp 491 - 498[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2015061 RAB Revue Centre de documentation En réserve 3L Disponible 105-2015062 RAB Revue Centre de documentation En réserve 3L Disponible Object-based building change detection from a single multispectral image and pre-existing geospatial information / Georgia Doxani in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 6 (June 2015)
PermalinkA rule-based parameter aided with object-based classification approach for extraction of building and roads from WorldView-2 images / Zahra Ziaei in Geocarto international, vol 29 n° 5 - 6 (August - October 2014)
PermalinkAnnual crop type classification of the US great plains for 2000 to 20011 / Daniel M. Howard in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 6 (June 2014)
PermalinkMulti-agent recognition system based on object based image analysis using WorldView-2 / Fatemeh Tabib Mahmoudi in Photogrammetric Engineering & Remote Sensing, PERS, vol 80 n° 2 (February 2014)
PermalinkSpatial resolution imagery requirements for identifying structure damage in a hurricane disaster: A cognitive approach / S. Battersby in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 6 (June 2012)
PermalinkRoad network extraction in suburban areas / A. Grote in Photogrammetric record, vol 27 n° 137 (March - May 2012)
PermalinkReal-time object detection with sub-pixel accuracy using the level set method / F. Burkert in Photogrammetric record, vol 26 n° 134 (June - August 2011)
PermalinkRule-based classification of a very high resolution image in an urban environment using multispectral segmentation by cartographic data / M. Bouziani in IEEE Transactions on geoscience and remote sensing, vol 48 n° 8 (August 2010)
PermalinkCognition-based extraction and modelling of topographic eminences / G. Sinha in Cartographica, vol 45 n° 2 (June 2010)
PermalinkDeveloping collaborative classifiers using an Expert-based Model / Giorgos Mountrakis in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 7 (July 2009)
Permalink