Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification par arbre de décision > classification et arbre de régression
classification et arbre de régressionSynonyme(s)CART (algorithme) |
Documents disponibles dans cette catégorie (20)



Etendre la recherche sur niveau(x) vers le bas
Assessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])
![]()
[article]
Titre : Assessing and mapping landslide susceptibility using different machine learning methods Type de document : Article/Communication Auteurs : Osman Orhan, Auteur ; Suleyman Sefa Bilgilioglu, Auteur ; Zehra Kaya, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2795 - 2820 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] carte thématique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] données d'entrainement (apprentissage automatique)
[Termes IGN] effondrement de terrain
[Termes IGN] lithologie
[Termes IGN] pente
[Termes IGN] régression logistique
[Termes IGN] réseau neuronal artificiel
[Termes IGN] séparateur à vaste marge
[Termes IGN] TurquieRésumé : (auteur) The main aim of the present study was to produce and compare landslide susceptibility maps by using five machine learning techniques, namely, artificial neural network (ANN), logistic regression (LR), support vector machine (SVM), random forest (RF) and, classification and regression tree (CART). The study area was determined as the Arhavi-Kabisre river basin, a region in which the most landslide incidents occur in Turkey. Firstly, a landslide inventory was produced by identifying a total of 252 landslides. Secondly, a total of 11 landslide conditioning factors were considered for the landslide susceptibility mapping. Subsequently, the five machine learning techniques were constructed with the help of the training dataset for the landslide susceptibility maps. Finally, the receiver operating characteristic (ROC), sensitivity, specificity, F-measure, accuracy and kappa index were applied to compare and validate the performance of the five machine learning techniques. Numéro de notice : A2022-594 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1837258 Date de publication en ligne : 30/10/2020 En ligne : https://doi.org/10.1080/10106049.2020.1837258 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101298
in Geocarto international > vol 37 n° 10 [01/06/2022] . - pp 2795 - 2820[article]Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)
![]()
[article]
Titre : Exploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China Type de document : Article/Communication Auteurs : Zhen Li, Auteur ; Dan Hu, Auteur Année de publication : 2022 Article en page(s) : n° 103392 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] Bâti-3D
[Termes IGN] classification et arbre de régression
[Termes IGN] corrélation
[Termes IGN] données localisées 2D
[Termes IGN] hauteur du bâti
[Termes IGN] ilot thermique urbain
[Termes IGN] image Landsat-OLI
[Termes IGN] milieu urbain
[Termes IGN] morphologie urbaine
[Termes IGN] Pékin (Chine)
[Termes IGN] saison
[Termes IGN] température au solRésumé : (auteur) With rapid urbanization, urban three-dimensional morphology and its ecological effects have received more attention. However, thorough investigations into the multiple scale impact of the 2D/3D architectural morphology on urban land surface temperature (LST) remain limited. Taking Beijing as a case study area, we quantified the contributions of the 2D/3D architectural morphology indicators and revealed their marginal effects on multiple scales using the boosted regression trees (BRT) method. The results showed that (1) the building coverage ratio and building height were the most significant factors influencing the LST across all spatial scales and seasons, (2) the 3D shape index, 3D fractal, and 3D adjacency were found to be influential factors, with sum contributions varying from 6.0% to 37.7%, and (3) in summer, the 3D shape index showed a stepwise negative correlation with the LST. The 3D fractal and 3D adjacency exhibited both positive and negative correlations with the LST. When the spatial scale was 240 m, the regulation amplitudes for the 3D shape index, 3D fractal, and 3D adjacency were 2.0°C, 1.0°C and 1.0°C, respectively. These findings provide quantitative insights that can be used to improve urban thermal environments and achieve sustainable urban development by adjusting architectural morphology. Numéro de notice : A2022-242 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.scs.2021.103392 Date de publication en ligne : 28/12/2021 En ligne : https://doi.org/10.1016/j.scs.2021.103392 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100169
in Sustainable Cities and Society > vol 78 (March 2022) . - n° 103392[article]Siamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
![]()
[article]
Titre : Siamese Adversarial Network for image classification of heavy mineral grains Type de document : Article/Communication Auteurs : Huizhen Hao, Auteur ; Zhiwei Jiang, Auteur ; Shiping Ge, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 105016 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] apprentissage profond
[Termes IGN] classification barycentrique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] microscope électronique
[Termes IGN] minéral
[Termes IGN] polarisation croisée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] réseau neuronal siamois
[Termes IGN] séparateur à vaste margeRésumé : (auteur) The identification of heavy mineral grains based on microscopic images can significantly reduce the time and economic cost of the identification. There are several deep learning models to realize end-to-end identification of mineral image recently. However, due to the variety and complexity of mineral images, the existing models are difficult to accurately recognize heavy mineral grains in microscopic images. Here we propose the Siamese Adversarial Network (SAN) for image classification of the heavy mineral grains, which is the first time to focus on addressing the domain difference of heavy mineral images from different basins. In more details, we design a Siamese feature encoder to extract features of both the plane-polarized and cross-polarized images as internal representation of heavy mineral grains. The features are reconstructed to discard domain-related information by adversarial training the heavy mineral classifier and domain discriminator. The identification performance of the models under the three mixed domain experiments is consistently higher than the performance under the same domain settings respectively which shows that the model we proposed achieves a great generalization ability on unseen domains. Numéro de notice : A2022-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.105016 Date de publication en ligne : 03/12/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.105016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99810
in Computers & geosciences > vol 159 (February 2022) . - n° 105016[article]Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 n° 1 (2022)
![]()
[article]
Titre : Forest fire susceptibility assessment using google earth engine in Gangwon-do, Republic of Korea Type de document : Article/Communication Auteurs : Yong Piao, Auteur ; Dongkun Lee, Auteur ; Sangjin Park, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 432 - 450 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] aléa
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] Corée du sud
[Termes IGN] Google Earth Engine
[Termes IGN] incendie de forêt
[Termes IGN] pente
[Termes IGN] risque naturel
[Termes IGN] vulnérabilitéRésumé : (auteur) Forest fires are one of the most frequently occurring natural hazards, causing substantial economic loss and destruction of forest cover. As the Gangwon-do region in Korea has abundant forest resources and ecological diversity as Korea's largest forest area, spatial data on forest fire susceptibility of the region are urgently required. In this study, a forest fire susceptibility map (FFSM) of Gangwon-do was constructed using Google Earth Engine (GEE) and three machine learning algorithms: Classification and Regression Trees (CART), Random Forest (RF), and Boosted Regression Trees (BRT). The factors related to climate, topography, hydrology, and human activity were constructed. To verify the accuracy, the area under the receiver operating characteristic curve (AUC) was used. The AUC values were 0.846 (BRT), 0.835 (RF), 0.751 (CART). Factor importance analysis was performed to identify the important factors of the occurrence of forest fires in Gangwon-do. The results show that the most important factor in the Gangwon-do region is slope. A slope of approximately 17° (moderately steep) has a considerable impact on the occurrence of forest fires. Human activity and interference are the other important factors that affect forest fires. The established FFSM can support future efforts on forest resource protection and environmental management planning in Gangwon-do. Numéro de notice : A2022-445 Affiliation des auteurs : non IGN Nature : Article DOI : 10.1080/19475705.2022.2030808 Date de publication en ligne : 02/02/2022 En ligne : https://doi.org/10.1080/19475705.2022.2030808 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99942
in Geomatics, Natural Hazards and Risk > vol 13 n° 1 (2022) . - pp 432 - 450[article]Improving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (January 2022)
![]()
[article]
Titre : Improving LSMA for impervious surface estimation in an urban area Type de document : Article/Communication Auteurs : Jin Wang, Auteur ; Yaolong Zhao, Auteur ; Yingchun Fu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 37 - 51 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse des mélanges spectraux
[Termes IGN] classification et arbre de régression
[Termes IGN] image Landsat-OLI
[Termes IGN] régression
[Termes IGN] signature spectrale
[Termes IGN] surface imperméable
[Termes IGN] Yunnan (Chine)
[Termes IGN] zone urbaineRésumé : (auteur) Linear spectral mixture analysis (LSMA) and regression analysis are the two most conventionally used methods to estimate impervious surfaces at the subpixel scale in an urban area. However, LSMA lacks the sensitivity to pixel brightness, which leads to inter variability of endmembers and affects the ability to distinguish features with a similar spectral signature. This research aims to develop LSMA aided by a regression analysis model to estimate impervious surfaces with higher accuracy. A spectral angle mapping (SAM) based regression analysis model is introduced to reduce errors. Based on high-resolution images and field survey data, the SAM-based regression analysis can estimate non-impervious surface and high-impervious surface densities with high accuracy, while less accurate in impervious surfaces with low/medium density. In contrast, LSMA is able to estimate low/medium-density impervious surfaces with higher accuracy. We propose an improved approach by integrating the two methods, regression analysis aided LSMA, for impervious surface estimation. The proposed method increases the overall accuracy of the impervious surface estimation to 85.24%, which is significantly greater than that of the conventional methods. Numéro de notice : A2022-098 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article DOI : 10.1080/22797254.2021.2018666 Date de publication en ligne : 05/01/2022 En ligne : https://doi.org/10.1080/22797254.2021.2018666 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99548
in European journal of remote sensing > vol 55 n° 1 (January 2022) . - pp 37 - 51[article]The spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkInvestigating the application of artificial intelligence for earthquake prediction in Terengganu / Suzlyana Marhain in Natural Hazards, vol 108 n° 1 (August 2021)
PermalinkCloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
PermalinkPermalinkCombination of Landsat 8 OLI and Sentinel-1 SAR time-series data for mapping paddy fields in parts of West and Central Java provinces, Indonesia / Sanjiwana Arjasakusuma in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkCombining GF-2 and RapidEye satellite data for mapping mangrove species using ensemble machine-learning methods / Liheng Peng in International Journal of Remote Sensing IJRS, vol 41 n° 3 (15 - 22 janvier 2020)
PermalinkHigh‐resolution national land use scenarios under a shrinking population in Japan / Haruka Ohashi in Transactions in GIS, vol 23 n° 4 (August 2019)
PermalinkEvaluating metrics derived from Landsat 8 OLI imagery to map crop cover / Rei Sonobe in Geocarto international, vol 34 n° 8 ([15/06/2019])
PermalinkA simple approach to forest structure classification using airborne laser scanning that can be adopted across bioregions / Syed Adnan in Forest ecology and management, vol 433 (15 February 2019)
Permalink