Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification par arbre de décision > classification et arbre de régression
classification et arbre de régressionSynonyme(s)CART (algorithme) |
Documents disponibles dans cette catégorie (25)



Etendre la recherche sur niveau(x) vers le bas
Canopy self-replacement in Pinus sylvestris rear-edge populations following drought-induced die-off and mortality / Jordi Margalef- Marrase in Forest ecology and management, vol 521 (October-1 2022)
![]()
[article]
Titre : Canopy self-replacement in Pinus sylvestris rear-edge populations following drought-induced die-off and mortality Type de document : Article/Communication Auteurs : Jordi Margalef- Marrase, Auteur ; Guillem Bagaria, Auteur ; Francisco Lloret, Auteur Année de publication : 2022 Article en page(s) : n° 120427 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] adaptation (biologie)
[Termes IGN] analyse de données
[Termes IGN] canopée
[Termes IGN] Catalogne (Espagne)
[Termes IGN] changement climatique
[Termes IGN] classification et arbre de régression
[Termes IGN] croissance des arbres
[Termes IGN] dépérissement
[Termes IGN] mortalité
[Termes IGN] Pinus sylvestris
[Termes IGN] Quercus pubescens
[Termes IGN] sécheresse
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) In recent years, Pinus sylvestris die-off and mortality events have occurred across all its range of distribution, usually associated with recurrent droughts induced by climate change. A shift in canopy dominance towards other better adapted co-existing species can be expected, especially in populations located close to their climatic tolerance limits. Herein, we tested, along a local elevational gradient, whether canopy opening resulting from die-off and mortality favours the growth of a non-dominant co-existing tree species (Quercus pubescens) established in the sub-canopy, in comparison to P. sylvestris sub-canopy trees. We also tested whether the growth of both species is associated with local climatic suitability for these species (extracted from SDMs) or, alternatively, with direct measures of micro-climatic variables. Finally, the effect on tree growth of other micro-local factors such as competition, canopy closure and micro-topography was also tested. Sub-canopy tree growth was enhanced overall by canopy opening resulting from P. sylvestris canopy die-off, but this response was stronger in P. sylvestris trees, reinforcing the self-replacement of this species after die-off. This higher growth rate is related to modifications in the micro-local climate (higher temperatures in the wettest quarter). Conversely, Q. pubescens is less sensitive to micro-local climate conditions but it can grow faster than P. sylvestris on stands with no canopy die-off or mortality. In contrast, climatic suitability extracted from SDMs was negatively related to sub-canopy P. sylvestris growth and had no effect on Q. pubescens. These contrasting results support observations at plot scale that P. sylvestris self-replacement is better explained by local environmental conditions than by values of climatic suitability obtained from regional-scale data-sets. Nevertheless, these climatic suitability measures remain consistent with the overall pattern of low seedling recruitment observed in previous works at the rear edge of species' distribution. This study reveals that short-term shifts in species dominance at a local scale will not necessarily occur in the studied P. sylvestris forests following die-off. This finding endorses the notion that micro-local environment and species traits (i.e., light and temperature tolerance, life-history strategies) modulate the capacity for resilience in rear-edge populations that would probably be prone to collapse otherwise. Numéro de notice : A2022-709 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : https://doi.org/10.1016/j.foreco.2022.120427 Date de publication en ligne : 21/07/2022 En ligne : https://doi.org/10.1016/j.foreco.2022.120427 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101585
in Forest ecology and management > vol 521 (October-1 2022) . - n° 120427[article]Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood / Amid Darabi in Geocarto international, vol 37 n° 19 ([15/09/2022])
![]()
[article]
Titre : Development of a novel hybrid multi-boosting neural network model for spatial prediction of urban flood Type de document : Article/Communication Auteurs : Amid Darabi, Auteur ; Omid Rahmati, Auteur ; Seyed Amir Naghibi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 5716 - 5741 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes IGN] aléa
[Termes IGN] apprentissage automatique
[Termes IGN] cartographie des risques
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] écoulement des eaux
[Termes IGN] inondation
[Termes IGN] Iran
[Termes IGN] simulation spatiale
[Termes IGN] zone urbaineRésumé : (auteur) In this study, a new hybridized machine learning algorithm for urban flood susceptibility mapping, named MultiB-MLPNN, was developed using a multi-boosting technique and MLPNN. The model was tested in Amol City, Iran, a data-scarce city in an ungauged area which is prone to severe flood inundation events and currently lacks flood prevention infrastructure. Performance of the hybridized model was compared with that of a standalone MLPNN model, random forest and boosted regression trees. Area under the curve, efficiency, true skill statistic, Matthews correlation coefficient, misclassification rate, sensitivity and specificity were used to evaluate model performance. In validation, the MultiB-MLPNN model showed the best predictive performance. The hybridized MultiB-MLPNN model is thus useful for generating realistic flood susceptibility maps for data-scarce urban areas. The maps can be used to develop risk-reduction measures to protect urban areas from devastating floods, particularly where available data are insufficient to support physically based hydrological or hydraulic models. Numéro de notice : A2022-708 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1920629 Date de publication en ligne : 13/05/2021 En ligne : https://doi.org/10.1080/10106049.2021.1920629 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101578
in Geocarto international > vol 37 n° 19 [15/09/2022] . - pp 5716 - 5741[article]Forest tree species classification based on Sentinel-2 images and auxiliary data / Haotian You in Forests, vol 13 n° 9 (september 2022)
![]()
[article]
Titre : Forest tree species classification based on Sentinel-2 images and auxiliary data Type de document : Article/Communication Auteurs : Haotian You, Auteur ; Yuanwei Huang, Auteur ; Zhigang Qin, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 1416 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] dioxyde d'azote
[Termes IGN] distribution spatiale
[Termes IGN] Extreme Gradient Machine
[Termes IGN] image Sentinel-MSI
[Termes IGN] phénologie
[Termes IGN] précipitation
[Termes IGN] réflectance spectrale
[Termes IGN] température de l'air
[Termes IGN] texture du sol
[Termes IGN] topographie localeRésumé : (auteur) Most research on forest tree species classification based on optical image data uses information such as spectral reflectance, vegetation index, texture, and phenology data. However, owing to the limited spectral resolution of multispectral images and the high cost of hyperspectral data, there is room for improvement in the classification of tree species in large areas based on optical images. The combined application of multispectral images and other auxiliary data can provide a new method for improving tree species classification accuracy. Hence, Sentinel-2 images were used to extract spectral reflectance, spectral index, texture, and phenological information. Data for topography, precipitation, air temperature, ultraviolet aerosol index, NO2 concentration, and other variables were included as auxiliary data. Models for forest tree species classification were constructed through feature combination and feature optimization using the random forest (RF), gradient tree boost (GTB), support vector machine (SVM), and classification and regression tree (CART) algorithms. The classification results of 16 feature combinations with the 4 classification methods were compared, and the contributions of different features to the classification models of forest tree species were evaluated. Finally, the optimal classification model was selected to identify the spatial distribution of forest tree species in the study area. The model based on feature optimization gave the best results among the 16 feature combination models. The overall accuracy and kappa coefficient were increased by 18% and 0.21, respectively, compared with the spectral classification model, and by 17% and 0.20, respectively, compared with the spectral and spectral index classification model. By analyzing the feature optimization model, it was found that terrain, ultraviolet aerosol index, and phenological information ranked as the top three features in terms of importance. Although the importance of spectral reflectance and spectral index features was lower, the number of feature variables accounted for a large proportion of the total. The importance of commonly used texture features was limited, and these features were not present in the feature optimization model. The RF algorithm had the highest classification accuracy, with an overall accuracy of 82.69% and a kappa coefficient of 0.80, among the four classification algorithms. The results of GTB were close to those of RF, and the difference in overall classification accuracy was only 0.14%. However, the results of the SVM and CART algorithms were relatively weaker, with overall classification accuracies of about 70%. It can be concluded that the combined application of Sentinel-2 images and auxiliary data can improve forest tree species classification accuracy. The model based on feature optimization achieved the highest classification accuracy among the 16 feature combination models. The spectral reflectance and spectral index data extracted from optical images are useful for tree species classification, but the effect of texture features was very limited. Auxiliary data, such as topographic features, ultraviolet aerosol index, phenological features, NO2 concentration features, topographic diversity features, precipitation features, temperature features, and multi-scale topographic location index data, can effectively improve forest tree species classification accuracy. The RF algorithm had the highest accuracy, and it can be used for tree species classification space distribution identification. The combined application of Sentinel-2 images and auxiliary data can improve classification accuracy, but the highest accuracy of the model was only 82.69%, which leaves room for improvement. Thus, more effective auxiliary data and the vertical structural parameters extracted from satellite LiDAR can be combined with multispectral images to improve forest tree species classification accuracy in future research. Numéro de notice : A2022-754 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/f13091416 Date de publication en ligne : 02/09/2022 En ligne : https://doi.org/10.3390/f13091416 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101757
in Forests > vol 13 n° 9 (september 2022) . - n° 1416[article]Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs / Douglas Stefanello Facco in Geocarto international, vol 37 n° 16 ([15/08/2022])
![]()
[article]
Titre : Comparison of PBIA and GEOBIA classification methods in classifying turbidity in reservoirs Type de document : Article/Communication Auteurs : Douglas Stefanello Facco, Auteur ; Laurindo Antonio Guasselli, Auteur ; Luis Fernando Chimelo Ruiz, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 4762 - 4783 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse comparative
[Termes IGN] analyse d'image orientée objet
[Termes IGN] bande spectrale
[Termes IGN] Brésil
[Termes IGN] centrale hydroélectrique
[Termes IGN] classification bayesienne
[Termes IGN] classification dirigée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] image Landsat-OLI
[Termes IGN] segmentation d'image
[Termes IGN] turbidité des eauxRésumé : (auteur) Our goal is to compare the performance of Classification and Regression Tree, Naive Bayes and Random Forest algorithms, from supervised image classification, and approaches on Pixel-Based Image analysis (PBIA) and Geographic Object-Based Image Analysis (GEOBIA), to classify turbidity in reservoirs. Tod do so, we use Landsat 8 image and bands and spectral indices, as predictive parameters, as well as the classification algorithms based on PBIA and GEOBIA. The Brazilian Itaipu reservoir was adopted, as a case study. Our results show that the RF classifier obtained the highest accuracy in both classification approaches, followed by CART and NB. The KA and OA indices of the GEOBIA classifications were superior to the PBIA classifications in both algorithms. This study contributes with an approach to quickly and accurately delineating turbidity spectral limits in reservoirs. Numéro de notice : A2022-668 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2021.1899302 Date de publication en ligne : 22/06/2021 En ligne : https://doi.org/10.1080/10106049.2021.1899302 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101519
in Geocarto international > vol 37 n° 16 [15/08/2022] . - pp 4762 - 4783[article]The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests / Vahid Nasiri in ISPRS International journal of geo-information, vol 11 n° 8 (August 2022)
![]()
[article]
Titre : The influence of data density and integration on forest canopy cover mapping using Sentinel-1 and Sentinel-2 time series in Mediterranean oak forests Type de document : Article/Communication Auteurs : Vahid Nasiri, Auteur ; Seyed Mohammad Moein Sadeghi, Auteur ; Fardin Moradi, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 423 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] canopée
[Termes IGN] classification et arbre de régression
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] couvert forestier
[Termes IGN] forêt méditerranéenne
[Termes IGN] Google Earth Engine
[Termes IGN] image Sentinel-MSI
[Termes IGN] image Sentinel-SAR
[Termes IGN] Iran
[Termes IGN] placette d'échantillonnage
[Termes IGN] Quercus (genre)Résumé : (auteur) Forest canopy cover (FCC) is one of the most important forest inventory parameters and plays a critical role in evaluating forest functions. This study examines the potential of integrating Sentinel-1 (S-1) and Sentinel-2 (S-2) data to map FCC in the heterogeneous Mediterranean oak forests of western Iran in different data densities (one-year datasets vs. three-year datasets). This study used very high-resolution satellite images from Google Earth, gridded points, and field inventory plots to generate a reference dataset. Based on it, four FCC classes were defined, namely non-forest, sparse forest (FCC = 1–30%), medium-density forest (FCC = 31–60%), and dense forest (FCC > 60%). In this study, three machine learning (ML) models, including Random Forest (RF), Support Vector Machine (SVM), and Classification and Regression Tree (CART), were used in the Google Earth Engine and their performance was compared for classification. Results showed that the SVM produced the highest accuracy on FCC mapping. The three-year time series increased the ability of all ML models to classify FCC classes, in particular the sparse forest class, which was not distinguished well by the one-year dataset. Class-level accuracy assessment results showed a remarkable increase in F-1 scores for sparse forest classification by integrating S-1 and S-2 (10.4% to 18.2% increased for the CART and SVM ML models, respectively). In conclusion, the synergetic use of S-1 and S-2 spectral temporal metrics improved the classification accuracy compared to that obtained using only S-2. The study relied on open data and freely available tools and can be integrated into national monitoring systems of FCC in Mediterranean oak forests of Iran and neighboring countries with similar forest attributes. Numéro de notice : A2022-649 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi11080423 Date de publication en ligne : 26/07/2022 En ligne : https://doi.org/10.3390/ijgi11080423 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101465
in ISPRS International journal of geo-information > vol 11 n° 8 (August 2022) . - n° 423[article]Assessing and mapping landslide susceptibility using different machine learning methods / Osman Orhan in Geocarto international, vol 37 n° 10 ([01/06/2022])
PermalinkExploring the relationship between the 2D/3D architectural morphology and urban land surface temperature based on a boosted regression tree: A case study of Beijing, China / Zhen Li in Sustainable Cities and Society, vol 78 (March 2022)
PermalinkSiamese Adversarial Network for image classification of heavy mineral grains / Huizhen Hao in Computers & geosciences, vol 159 (February 2022)
PermalinkForest fire susceptibility assessment using Google Earth engine in Gangwon-do, Republic of Korea / Yong Piao in Geomatics, Natural Hazards and Risk, vol 13 (2022)
PermalinkImproving LSMA for impervious surface estimation in an urban area / Jin Wang in European journal of remote sensing, vol 55 n° 1 (2022)
PermalinkThe spatiotemporal implications of urbanization for urban heat islands in Beijing: A predictive approach based on CA–Markov modeling (2004–2050) / Muhammad Amir Siddique in Remote sensing, vol 13 n° 22 (November-2 2021)
PermalinkInvestigating the application of artificial intelligence for earthquake prediction in Terengganu / Suzlyana Marhain in Natural Hazards, vol 108 n° 1 (August 2021)
PermalinkCloud-native seascape mapping of Mozambique’s Quirimbas National Park with Sentinel-2 / Dimitris Poursanidis in Remote sensing in ecology and conservation, vol 7 n° 2 (June 2021)
PermalinkAssessing spatial-temporal evolution processes and driving forces of karst rocky desertification / Fei Chen in Geocarto international, vol 36 n° 3 ([15/02/2021])
PermalinkPermalink