Descripteur
Documents disponibles dans cette catégorie (19)



Etendre la recherche sur niveau(x) vers le bas
GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules / Xuke Hu in International journal of geographical information science IJGIS, vol 36 n° 2 (February 2022)
![]()
[article]
Titre : GazPNE: annotation-free deep learning for place name extraction from microblogs leveraging gazetteer and synthetic data by rules Type de document : Article/Communication Auteurs : Xuke Hu, Auteur ; Hussein S. Al-Olimat, Auteur ; Jens Kersten, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 310 - 337 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] apprentissage profond
[Termes IGN] classification hybride
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données topographiques
[Termes IGN] extraction de données
[Termes IGN] géobalise
[Termes IGN] microblogue
[Termes IGN] OpenStreetMap
[Termes IGN] répertoire toponymique
[Termes IGN] toponyme
[Termes IGN] TwitterRésumé : (auteur) Extracting precise location information from microblogs is a crucial task in many applications, particularly in disaster response, revealing where damages are, where people need assistance, and where help can be found. A crucial prerequisite to location extraction is place name extraction. In this paper, we present GazPNE: a hybrid approach to place name extraction which fuses rules, gazetteers, and deep learning techniques without requiring any manually annotated data. The core of the approach is to learn the intrinsic characteristics of multi-word place names with deep learning from gazetteers. Specifically, GazPNE consists of a rule-based system to select n-grams from the microblogs that potentially contain place names, and a C-LSTM model that decides if the selected n-gram is a place name or not. The C-LSTM is trained on 388.1 million examples containing 6.8 million positive examples with US and Indian place names extracted from OpenStreetMap and 381.3 million negative examples synthesized by rules. We evaluate GazPNE against the SoTA on a manually annotated 4,500 tweet dataset which contains 9,026 place names from three foods: 2016 in Louisiana (US), 2016 in Houston (US), and 2015 in Chennai (India). GazPNE achieves SotA performance on the test data with an F1 of 0.84. Numéro de notice : A2022-164 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1947507 Date de publication en ligne : 07/07/2021 En ligne : https://doi.org/10.1080/13658816.2021.1947507 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99787
in International journal of geographical information science IJGIS > vol 36 n° 2 (February 2022) . - pp 310 - 337[article]Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India / Sunil Saha in Geomatics, Natural Hazards and Risk, vol 12 n° 1 (2021)
![]()
[article]
Titre : Integrating multilayer perceptron neural nets with hybrid ensemble classifiers for deforestation probability assessment in Eastern India Type de document : Article/Communication Auteurs : Sunil Saha, Auteur ; Gopal Chandra, Auteur ; Biswajeet Pradhan, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 29 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] apprentissage automatique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification hybride
[Termes IGN] classification par Perceptron multicouche
[Termes IGN] déboisement
[Termes IGN] ensachage
[Termes IGN] Inde
[Termes IGN] modèle de simulation
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] Rotation Forest classification
[Termes IGN] système d'information géographiqueRésumé : (auteur) The rapid expansion of human settlement, agricultural land and roads because of population growth in several regions of the world has contributed to the depletion of forest land. In this study, novel ensemble intelligent approaches using bagging, dagging and rotation forest (RTF) as meta classifiers of multilayer perceptron (MLP) were used to predict spatial deforestation probability (DP) in Gumani Basin, India. The success rate and correctness of prediction of the ensemble models were compared with MLP. A total of 1000 deforested pixels and 14 deforestation determining factors (DDFs) were used. The ensemble models were trained using 70% of the deforested pixels and validated with the remaining 30%. DDFs were chosen by applying the information gain ratio and Relief-F test methods. Distance to settlement, population growth and distance to roads were the most important factors. The results of DP modelling demonstrated that nearly 16.82%–12.64% of the basin had very high DP. All four models created DP maps with reasonable prediction accuracy and goodness of fit, but the best map was produced by MLP-bagging. The accuracy of the MLP neural net model was increased 2-3% after ensemble with the hybrid meta classifiers (RTF, bagging and dagging). The proposed method could be used for deforestation prediction in other areas having similar geo-environmental conditions. Furthermore, the findings might be used as a basis for future research and could help planners in forest management. Numéro de notice : A2021-106 Affiliation des auteurs : non IGN Thématique : FORET/INFORMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475705.2020.1860139 Date de publication en ligne : 22/12/2020 En ligne : https://doi.org/10.1080/19475705.2020.1860139 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96903
in Geomatics, Natural Hazards and Risk > vol 12 n° 1 (2021) . - pp 29 - 62[article]Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective / Mohammad D. Hossain in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
![]()
[article]
Titre : Segmentation for Object-Based Image Analysis (OBIA): A review of algorithms and challenges from remote sensing perspective Type de document : Article/Communication Auteurs : Mohammad D. Hossain, Auteur ; Dongmei Chen, Auteur Année de publication : 2019 Article en page(s) : pp 115 - 134 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes IGN] analyse d'image orientée objet
[Termes IGN] appariement de données localisées
[Termes IGN] apprentissage automatique
[Termes IGN] classification hybride
[Termes IGN] image à haute résolution
[Termes IGN] objet géographique
[Termes IGN] segmentation d'image
[Termes IGN] segmentation en régions
[Termes IGN] segmentation par décomposition-fusionRésumé : (Auteur) Image segmentation is a critical and important step in (GEographic) Object-Based Image Analysis (GEOBIA or OBIA). The final feature extraction and classification in OBIA is highly dependent on the quality of image segmentation. Segmentation has been used in remote sensing image processing since the advent of the Landsat-1 satellite. However, after the launch of the high-resolution IKONOS satellite in 1999, the paradigm of image analysis moved from pixel-based to object-based. As a result, the purpose of segmentation has been changed from helping pixel labeling to object identification. Although several articles have reviewed segmentation algorithms, it is unclear if some segmentation algorithms are generally more suited for (GE)OBIA than others. This article has conducted an extensive state-of-the-art survey on OBIA techniques, discussed different segmentation techniques and their applicability to OBIA. Conceptual details of those techniques are explained along with the strengths and weaknesses. The available tools and software packages for segmentation are also summarized. The key challenge in image segmentation is to select optimal parameters and algorithms that can general image objects matching with the meaningful geographic objects. Recent research indicates an apparent movement towards the improvement of segmentation algorithms, aiming at more accurate, automated, and computationally efficient techniques. Numéro de notice : A2019-138 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.009 Date de publication en ligne : 23/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.009 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92469
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 115 - 134[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve L003 Disponible 081-2019043 DEP-RECP Revue LASTIG Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Integrating elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover mapping / Mirco Sturari in European journal of remote sensing, vol 50 n° 1 (2017)
![]()
[article]
Titre : Integrating elevation data and multispectral high-resolution images for an improved hybrid Land Use/Land Cover mapping Type de document : Article/Communication Auteurs : Mirco Sturari, Auteur ; Emanuele Frontoni, Auteur ; Roberto Pierdicca, Auteur ; Adriano Mancini, Auteur ; Eva Savina Malinverni, Auteur ; Anna Nora Tassetti, Auteur ; Primo Zingaretti, Auteur Année de publication : 2017 Article en page(s) : pp 1 - 17 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes IGN] base de données d'occupation du sol
[Termes IGN] carte d'occupation du sol
[Termes IGN] classification hybride
[Termes IGN] données altimétriques
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image multibande
[Termes IGN] intégration de données
[Termes IGN] occupation du solRésumé : (Auteur) The combination of elevation data together with multispectral high-resolution images is a new methodology for obtaining land use/land cover classification. It represents a step forward for both the accuracy and automation of LULC applications and allows users to setup thematic assignments through rules based on feature attributes and human expert interpretation of land usage. The synergy between different types of information means that LiDAR can give new hints at both the segmentation and hybrid classification steps, leading to a joint use of multispectral, spatial and elevation data. The output is a thematic map characterized by a custom-designed legend that is able to discriminate between land cover classes with similar spectral characteristics (level 3 of the CLC legend). Experimental results from a hilly farmland area with some urban structures (Musone river basin, Ancona, Italy) are used to highlight how the proposed methodology enhances land cover classification in heterogeneous environments. Numéro de notice : A2017-043 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1080/22797254.2017.1274572 En ligne : http://doi.org/10.1080/22797254.2017.1274572 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84213
in European journal of remote sensing > vol 50 n° 1 (2017) . - pp 1 - 17[article]A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images / Anastasios L. Fytsilis in ISPRS Journal of photogrammetry and remote sensing, vol 119 (September 2016)
![]()
[article]
Titre : A methodology for near real-time change detection between Unmanned Aerial Vehicle and wide area satellite images Type de document : Article/Communication Auteurs : Anastasios L. Fytsilis, Auteur ; Anthony Prokos, Auteur ; Konstantinos D. Koutroumbas, Auteur ; et al., Auteur Année de publication : 2016 Article en page(s) : pp 165- 186 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification hybride
[Termes IGN] drone
[Termes IGN] gradient
[Termes IGN] image aérienne
[Termes IGN] image satellite
[Termes IGN] méthodologie
[Termes IGN] orthorectification automatique
[Termes IGN] recalage d'imageRésumé : (Auteur) In this paper a novel integrated hybrid methodology for unsupervised change detection between Unmanned Aerial Vehicle (UAV) and satellite images, which can be utilized in various fields like security applications (e.g. border surveillance) and damage assessment, is proposed. This is a challenging problem mainly due to the difference in geographic coverage and the spatial resolution of the two images, as well as to the acquisition modes which lead to misregistration errors. The methodology consists of the following steps: (a) pre-processing, where the part of the satellite image that corresponds to the UAV image is determined and the UAV image is ortho-rectified using information provided by a Digital Terrain Model, (b) the detection of potential changes, which is based exclusively on intensity and image gradient information, (c) the generation of the region map, where homogeneous regions are produced by the previous potential changes via a seeded region growing algorithm and placed on the region map, and (d) the evaluation of the above regions, in order to characterize them as true changes or not. The methodology has been applied on demanding real datasets with very encouraging results. Finally, its robustness to the misregistration errors is assessed via extensive experimentation. Numéro de notice : A2016-782 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2016.06.001 En ligne : http://dx.doi.org/10.1016/j.isprsjprs.2016.06.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=82479
in ISPRS Journal of photogrammetry and remote sensing > vol 119 (September 2016) . - pp 165- 186[article]A semi-ellipsoid-model based fuzzy classifier to map grassland in Inner Mongolia, China / Hai Lan in ISPRS Journal of photogrammetry and remote sensing, vol 85 (November 2013)
PermalinkA hybrid classification matching method for geospatial services / Yandong Wang in Transactions in GIS, vol 16 n° 6 (December 2012)
PermalinkA supervised and fuzzy-based approach determine optimal multi-resolution image segmentation parameters / H. Tong in Photogrammetric Engineering & Remote Sensing, PERS, vol 78 n° 10 (October 2012)
PermalinkA hybrid classification scheme for mining multisource geospatial data / R. Vatsavai in Geoinformatica, vol 15 n° 1 (January 2011)
PermalinkApplication de la classification floue (fuzzy k-NN) à l'étude de l'occupation du sol d'une zone urbaine : le cas de la région de Genève / S. Rakotoniaina in Photo interprétation, European journal of applied remote sensing, vol 46 n° 2 (juin 2010)
PermalinkAn adaptive thresholding multiple classifiers system for remote sensing image classification / Y. Tzeng in Photogrammetric Engineering & Remote Sensing, PERS, vol 75 n° 6 (June 2009)
PermalinkFeature reduction using a singular value decomposition for the iterative guided spectral class rejection hybrid classifier / R. Philipps in ISPRS Journal of photogrammetry and remote sensing, vol 64 n° 1 (January - February 2009)
PermalinkNeuro-fuzzy based analysis of hyperspectral imagery / F. Qiu in Photogrammetric Engineering & Remote Sensing, PERS, vol 74 n° 10 (October 2008)
PermalinkApport de deux méthodes de suivi d'évolution de la zone urbaine par imagerie / R. Bouchiha in Revue Française de Photogrammétrie et de Télédétection, n° 190 (Septembre 2008)
PermalinkFuzzy classification: a case study using Landsat TM images in Iran / A.M. Lak in GIM international, vol 20 n° 7 (July 2006)
Permalink