Descripteur
Termes descripteurs IGN > 1- Candidats > classification orientée objet
classification orientée objet |



Etendre la recherche sur niveau(x) vers le bas
Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
![]()
[article]
Titre : Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm Type de document : Article/Communication Auteurs : Siddhartho Shekhar Paul, Auteur ; Jianbing Li, Auteur ; Yubao Li, Auteur ; Lei Shen, Auteur Année de publication : 2021 Article en page(s) : pp 361 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bassin hydrographique
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] coupe rase (sylviculture)
[Termes descripteurs IGN] détection de changement
[Termes descripteurs IGN] érosion
[Termes descripteurs IGN] modèle RUSLE
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] qualité des eaux
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2021-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614099 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614099 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97081
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 361 - 375[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, Vol 172 (February 2021)
![]()
[article]
Titre : An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds Type de document : Article/Communication Auteurs : Fei Su, Auteur ; Haihong Zhu, Auteur ; Taoyi Chen, Auteur Année de publication : 2021 Article en page(s) : pp 114 - 131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] adjacence
[Termes descripteurs IGN] appariement de graphes
[Termes descripteurs IGN] arc
[Termes descripteurs IGN] bloc d'ancrage
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] jeu de données localisées
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] noeud
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] orientation
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Most of the existing 3D indoor object classification methods have shown impressive achievements on the assumption that all objects are oriented in the upward direction with respect to the ground. To release this assumption, great effort has been made to handle arbitrarily oriented objects in terrestrial laser scanning (TLS) point clouds. As one of the most promising solutions, anchor-based graphs can be used to classify freely oriented objects. However, this approach suffers from missing anchor detection since valid detection relies heavily on the completeness of an anchor’s point clouds and is sensitive to missing data. This paper presents an anchor-based graph method to detect and classify arbitrarily oriented indoor objects. The anchors of each object are extracted by the structurally adjacent relationship among parts instead of the parts’ geometric metrics. In the case of adjacency, an anchor can be correctly extracted even with missing parts since the adjacency between an anchor and other parts is retained irrespective of the area extent of the considered parts. The best graph matching is achieved by finding the optimal corresponding node-pairs in a super-graph with fully connecting nodes based on maximum likelihood. The performances of the proposed method are evaluated with three indicators (object precision, object recall and object F1-score) in seven datasets. The experimental tests demonstrate the effectiveness of dealing with TLS point clouds, RGBD point clouds and Panorama RGBD point clouds, resulting in performance scores of approximately 0.8 for object precision and recall and over 0.9 for chair precision and table recall. Numéro de notice : A2021-087 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.007 date de publication en ligne : 29/12/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.007 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96852
in ISPRS Journal of photogrammetry and remote sensing > Vol 172 (February 2021) . - pp 114 - 131[article]Building extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Building extraction from Lidar data using statistical methods Type de document : Article/Communication Auteurs : Haval Abdul-Jabbar Sadeq, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree. Numéro de notice : A2021-055 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.33 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96760
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 33 - 42[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021011 SL Revue Centre de documentation Revues en salle Disponible
[article]
Titre : Bretagne, la végétation cartographiée Type de document : Article/Communication Auteurs : Marielle Mayo, Auteur Année de publication : 2020 Article en page(s) : pp 46 - 49 Langues : Français (fre) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] 1:25.000
[Termes descripteurs IGN] acquisition d'images
[Termes descripteurs IGN] aménagement régional
[Termes descripteurs IGN] appariement semi-automatique
[Termes descripteurs IGN] ArcGIS
[Termes descripteurs IGN] BD ortho
[Termes descripteurs IGN] Bretagne
[Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] données localisées
[Termes descripteurs IGN] données publiques
[Termes descripteurs IGN] écologie végétale
[Termes descripteurs IGN] IGN cité
[Termes descripteurs IGN] image infrarouge couleur
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] modèle orienté objetRésumé : (Auteur) Une cartographie inédite de la végétation de Bretagne sera accessible en totalité en ligne en décembre. Produite par télédétection grâce à une méthode semi-automatisée innovante, elle répond aux nouveaux besoins des acteurs de la biodiversité et de l'aménagement du territoire. Numéro de notice : A2020-707 Affiliation des auteurs : non IGN Thématique : BIODIVERSITE/FORET/IMAGERIE Nature : Article nature-HAL : ArtSansCL DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96281
in Géomètre > n° 2185 (novembre 2020) . - pp 46 - 49[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 063-2020101 SL Revue Centre de documentation Revues en salle Disponible Object-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
![]()
[article]
Titre : Object-based classification of mixed forest types in Mongolia Type de document : Article/Communication Auteurs : E. Nyamjargal, Auteur ; D. Amarsaikhan, Auteur ; A. Munkh-Erdene, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1615 - 1626 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse d'image orientée objet
[Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] approche pixel
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] forêt
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] image Sentinel-MSI
[Termes descripteurs IGN] méthode du maximum de vraisemblance (estimation)
[Termes descripteurs IGN] Mongolie
[Termes descripteurs IGN] peuplement mélangéRésumé : (auteur) The aim of this study is to produce updated forest map of the Bogdkhan Mountain, Mongolia using multitemporal Sentinel-2A images. The target area has highly mixed forest types and it is very difficult to differentiate the fuzzy boundaries among different forest types. To extract the forest class information, an object-based classification technique is applied and a rule-base to separate the mixed classes is developed. The rule-base uses a hierarchy of rules describing different conditions under which the actual classification has to be performed. To compare the result of the developed method with a result of a pixel-based approach, a Bayesian maximum likelihood classification is applied. The final result indicates overall accuracy of 90.87% for the object-based classification, while for the pixel-based approach it is 79.89%. Overall, the research indicates that the object-based method that uses a thoroughly defined segmentation and a well-constructed rule-base can significantly improve the classification of mixed forest types and produce of a reliable forest map. Numéro de notice : A2020-619 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1583775 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1583775 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95995
in Geocarto international > vol 35 n° 14 [15/10/2020] . - pp 1615 - 1626[article]Ensemble learning for hyperspectral image classification using tangent collaborative representation / Hongjun Su in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
PermalinkDiscrimination of different sea ice types from CryoSat-2 satellite data using an Object-based Random Forest (ORF) / Su Shu in Marine geodesy, Vol 43 n° 3 (May 2020)
PermalinkClassification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network / Yueguan Yan in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
Permalink3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets / Hessah Albanwan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)
PermalinkClassification of poplar trees with object-based ensemble learning algorithms using Sentinel-2A imagery / H. Tombul in Journal of geodetic science, vol 10 n° 1 (janvier 2020)
PermalinkIdentification of alpine glaciers in the central Himalayas using fully polarimetric L-Band SAR data / Guo-Hui Yao in IEEE Transactions on geoscience and remote sensing, vol 58 n° 1 (January 2020)
PermalinkSatellite image time series classification with pixel-set encoders and temporal self-attention / Vivien Sainte Fare Garnot (2020)
![]()
PermalinkHalf a percent of labels is enough: efficient animal detection in UAV imagery using deep CNNs and active learning / Benjamin Kellenberger in IEEE Transactions on geoscience and remote sensing, vol 57 n° 12 (December 2019)
PermalinkScene context-driven vehicle detection in high-resolution aerial images / Chao Tao in IEEE Transactions on geoscience and remote sensing, Vol 57 n° 10 (October 2019)
PermalinkDelineation of vacant building land using orthophoto and lidar data object classification / Dejan Jenko in Geodetski vestnik, vol 63 n° 3 (September - November 2019)
Permalink