Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse d'image orientée objet > classification orientée objet
classification orientée objet |
Documents disponibles dans cette catégorie (107)



Etendre la recherche sur niveau(x) vers le bas
The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning / Elie Morin in Ecological indicators, vol 139 (June 2022)
![]()
[article]
Titre : The promising combination of a remote sensing approach and landscape connectivity modelling at a fine scale in urban planning Type de document : Article/Communication Auteurs : Elie Morin, Auteur ; Pierre-Alexis Herrault, Auteur ; Yvonnick Guinard, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 108930 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] analyse d'image orientée objet
[Termes IGN] analyse du paysage
[Termes IGN] BD Topo
[Termes IGN] carte d'occupation du sol
[Termes IGN] carte de la végétation
[Termes IGN] Chatellerault
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] connexité (topologie)
[Termes IGN] corridor biologique
[Termes IGN] extraction de la végétation
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] indicateur environnemental
[Termes IGN] milieu urbain
[Termes IGN] Niort
[Termes IGN] planification urbaine
[Termes IGN] Poitiers
[Termes IGN] segmentation d'imageRésumé : (auteur) Urban landscapes are rapid changing ecosystems with diverse urban forms that impede the movement of organisms. Therefore, designing and modelling ecological networks to identify biodiversity reservoirs and their corridors are crucial aspects of land management in terms of population persistence and survival. However, the land cover/use maps used for landscape connectivity modelling can lack information in such a highly complex environment. In this context, remote sensing approaches are gaining interest for the development of accurate land cover/use maps. We tested the efficiency of an object-based classification using open-source projects and free images to identify vegetation strata at a very fine scale and evaluated its contribution to landscape connectivity modelling. We compared different spatial and thematic resolutions from existing databases and object-based image analyses in three French cities. Our results suggested that this remote sensing approach produced reliable land cover maps to differentiate artificial areas, tree vegetation and herbaceous vegetation. Land cover maps enhanced with the remote sensing products substantially changed the structural connectivity indices, showing an improvement up to four times the proportion of herbaceous and tree vegetation. In addition, functional connectivity indices evaluated for several forest species were mainly impacted for medium dispersers in quantitative (metrics) and qualitative (corridors) estimations. Thus, the combination of this reproductible remote sensing approach and landscape connectivity modelling at a very fine scale provides new insights into the characterisation of ecological networks for conservation planning. Numéro de notice : A2022-368 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE/URBANISME Nature : Article DOI : 10.1016/j.ecolind.2022.108930 Date de publication en ligne : 04/05/2022 En ligne : https://doi.org/10.1016/j.ecolind.2022.108930 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100592
in Ecological indicators > vol 139 (June 2022) . - n° 108930[article]3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation / Heyang Thomas Li in The Visual Computer, vol 38 n° 5 (May 2022)
![]()
[article]
Titre : 3D lidar point-cloud projection operator and transfer machine learning for effective road surface features detection and segmentation Type de document : Article/Communication Auteurs : Heyang Thomas Li, Auteur ; Zachary Todd, Auteur ; Nikolas Bielski, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1759 - 1774 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] apprentissage profond
[Termes IGN] chaîne de traitement
[Termes IGN] classification orientée objet
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] espace image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] route
[Termes IGN] segmentation d'image
[Termes IGN] semis de points
[Termes IGN] signalisation routièreRésumé : (auteur) The classification and extraction of road markings and lanes are of critical importance to infrastructure assessment, planning and road safety. We present a pipeline for the accurate segmentation and extraction of rural road surface objects in 3D lidar point-cloud, as well as a method to extract geometric parameters belonging to tar seal. To decrease the computational resources needed, the point-clouds were aggregated into a 2D image space before being transformed using affine transformations. The Mask R-CNN algorithm is then applied to the transformed image space to localize, segment and classify the road objects. The segmentation results for road surfaces and markings can then be used for geometric parameter estimation such as road widths estimation, while the segmentation results show that the efficacy of the existing Mask R-CNN to segment needle-type objects is improved by our proposed transformations. Numéro de notice : A2022-376 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02103-8 Date de publication en ligne : 28/06/2021 En ligne : https://doi.org/10.1007/s00371-021-02103-8 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100627
in The Visual Computer > vol 38 n° 5 (May 2022) . - pp 1759 - 1774[article]Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour / Olivier de Joinville in XYZ, n° 170 (mars 2022)
[article]
Titre : Comparaison des images satellite et aériennes dans le domaine de la détection d’obstacles à la navigation aérienne et de leur mise à jour Type de document : Article/Communication Auteurs : Olivier de Joinville , Auteur ; Chloé Marcon, Auteur
Année de publication : 2022 Article en page(s) : pp 36 - 44 Note générale : Bibliographie Langues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] aéroport
[Termes IGN] analyse comparative
[Termes IGN] analyse diachronique
[Termes IGN] BD Topo
[Termes IGN] classification dirigée
[Termes IGN] classification orientée objet
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification pixellaire
[Termes IGN] contrôle qualité
[Termes IGN] détection de changement
[Termes IGN] détection du bâti
[Termes IGN] extraction de la végétation
[Termes IGN] image Pléiades-HR
[Termes IGN] image Sentinel-MSI
[Termes IGN] mise à jour de base de données
[Termes IGN] modèle numérique de surface
[Termes IGN] Nice
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] orthoimage
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] QGIS
[Termes IGN] réalité de terrainRésumé : (Auteur) Le Service d’information aéronautique (SIA) est un service de la DGAC (Direction générale de l’aviation civile) qui publie et exploite des obstacles à la navigation aérienne afin de sécuriser les vols aux abords des aérodromes. L’article propose une étude comparative entre des données images aériennes (OrthoImages) et des données images satellite (Pléiades et Sentinel) dans les deux domaines suivants : détection d’obstacles (essentiellement végétation et bâtiments) ainsi que leur mise à jour. Il ressort que les images satellite, du fait de leur forte qualité radiométrique et géométrique, offrent un potentiel légèrement supérieur aux images aériennes pour le SIA. De futures études utilisant d’autres capteurs optiques, LiDAR et Radar et des moyens de contrôle plus exhaustifs, devront être menées pour confirmer cette tendance. Numéro de notice : A2022-225 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueNat DOI : sans Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100191
in XYZ > n° 170 (mars 2022) . - pp 36 - 44[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 112-2022011 SL Revue Centre de documentation Revues en salle Disponible 112-2022012 SL Revue Centre de documentation Revues en salle Disponible Comparison of classification methods for urban green space extraction using very high resolution worldview-3 imagery / S. Vigneshwaran in Geocarto international, vol 36 n° 13 ([15/07/2021])
![]()
[article]
Titre : Comparison of classification methods for urban green space extraction using very high resolution worldview-3 imagery Type de document : Article/Communication Auteurs : S. Vigneshwaran, Auteur ; S. Vasantha Kumar, Auteur Année de publication : 2021 Article en page(s) : pp 1429 - 1442 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] carte de la végétation
[Termes IGN] classification dirigée
[Termes IGN] classification non dirigée
[Termes IGN] classification orientée objet
[Termes IGN] espace vert
[Termes IGN] flore urbaine
[Termes IGN] image à très haute résolution
[Termes IGN] image Worldview
[Termes IGN] Inde
[Termes IGN] Normalized Difference Vegetation Index
[Termes IGN] urbanismeRésumé : (auteur) Urban green space (UGS) plays a vital role in maintaining the ecological balance of a city and in ensuring healthy living of the city inhabitants. It is generally suggested that one-third of the city should be covered by green and to ensure this, the city administrators must have an accurate map of the existing UGS. Such a map would be useful to visualize the distribution of the existing green cover and also to find out the areas that can possibly be converted to UGS. Reported studies on UGS mapping have mostly used medium and high resolution images such as Landsat-TM, ETM+, Sentinel-2A, IKONOS, etc. However, studies on the use of very high resolution images for UGS extraction are very limited. The present study is a first attempt in utilizing the very high resolution Worldview-3 image for UGS extraction. Performance of different classification methods such as unsupervised, supervised, object based and normalized difference vegetation index (NDVI) were compared using the pan sharpened Worldview-3 image covering part of New Delhi in India. It was found that the unsupervised classification followed by manual recoding method showed superior performance with overall accuracy (OA) of 99% and κ coefficient of 0.98. Also, the OA achieved in the present study is the highest when compared to other reported studies on UGS extraction. The map of UGS revealed that almost 40% of the study area is covered by green which is more than the recommended value of 33% (one-third). In order to check the universality of the unsupervised classification approach in extracting UGS, Worldview-3 image covering Rio in Brazil was tested. It was found that an OA of 98% and κ coefficient of 0.95 were obtained which clearly indicate that the proposed approach would work very well in extracting UGS from any Worldview-3 imagery. Numéro de notice : A2021-553 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1665714 Date de publication en ligne : 18/09/2019 En ligne : https://doi.org/10.1080/10106049.2019.1665714 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98104
in Geocarto international > vol 36 n° 13 [15/07/2021] . - pp 1429 - 1442[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 059-2021131 SL Revue Centre de documentation Revues en salle Disponible Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm / Siddhartho Shekhar Paul in Geocarto international, vol 36 n° 4 ([01/03/2021])
![]()
[article]
Titre : Assessing land use–land cover change and soil erosion potential using a combined approach through remote sensing, RUSLE and random forest algorithm Type de document : Article/Communication Auteurs : Siddhartho Shekhar Paul, Auteur ; Jianbing Li, Auteur ; Yubao Li, Auteur ; Lei Shen, Auteur Année de publication : 2021 Article en page(s) : pp 361 - 375 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] bassin hydrographique
[Termes IGN] changement d'occupation du sol
[Termes IGN] classification orientée objet
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] coupe rase (sylviculture)
[Termes IGN] détection de changement
[Termes IGN] érosion
[Termes IGN] modèle RUSLE
[Termes IGN] occupation du sol
[Termes IGN] qualité des eaux
[Termes IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2021-161 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1614099 Date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1614099 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97081
in Geocarto international > vol 36 n° 4 [01/03/2021] . - pp 361 - 375[article]An anchor-based graph method for detecting and classifying indoor objects from cluttered 3D point clouds / Fei Su in ISPRS Journal of photogrammetry and remote sensing, vol 172 (February 2021)
PermalinkAnalyse de la dynamique d’embroussaillement des pelouses calcaires par traitement d’images / Théo Mesure (2021)
PermalinkBuilding extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
PermalinkDétection/reconnaissance d'objets urbains à partir de données 3D multicapteurs prises au niveau du sol, en continu / Younes Zegaoui (2021)
PermalinkPermalinkObject-based classification of mixed forest types in Mongolia / E. Nyamjargal in Geocarto international, vol 35 n° 14 ([15/10/2020])
PermalinkEnsemble learning for hyperspectral image classification using tangent collaborative representation / Hongjun Su in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
PermalinkDiscrimination of different sea ice types from CryoSat-2 satellite data using an Object-based Random Forest (ORF) / Su Shu in Marine geodesy, Vol 43 n° 3 (May 2020)
PermalinkClassification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network / Yueguan Yan in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
Permalink3D iterative spatiotemporal filtering for classification of multitemporal satellite data sets / Hessah Albanwan in Photogrammetric Engineering & Remote Sensing, PERS, vol 86 n° 1 (January 2020)
Permalink