Descripteur
Termes IGN > mathématiques > statistique mathématique > analyse de données > classification > classification spectrale
classification spectrale |
Documents disponibles dans cette catégorie (30)
Ajouter le résultat dans votre panier Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination / Kaili Zhang in Geocarto international, vol 38 n° 1 ([01/01/2023])
[article]
Titre : A method for remote sensing image classification by combining Pixel Neighbourhood Similarity and optimal feature combination Type de document : Article/Communication Auteurs : Kaili Zhang, Auteur ; Yonggang Chen, Auteur ; Wentao Wang, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : n° 2158948 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse spatiale
[Termes IGN] analyse spectrale
[Termes IGN] classification Spectral angle mapper
[Termes IGN] classification spectrale
[Termes IGN] corrélation automatique de points homologues
[Termes IGN] données vectorielles
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] pixel
[Termes IGN] précision de la classification
[Termes IGN] signature texturale
[Termes IGN] similitude spectrale
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) In the study of remote sensing image classification, feature extraction and selection is an effective method to distinguish different classification targets. Constructing a high-quality spectral-spatial feature and feature combination has been a worthwhile topic for improving classification accuracy. In this context, this study constructed a spectral-spatial feature, namely the Pixel Neighbourhood Similarity (PNS) index. Meanwhile, the PNS index and 19 spectral, textural and terrain features were involved in the Correlation-based Feature Selection (CFS) algorithm for feature selection to generate a feature combination (PNS-CFS). To explore how PNS and PNS-CFS improve the classification accuracy of land types. The results show that: (1) The PNS index exhibited clear boundaries between different land types. The performance quality of PNS was relatively highest compared to other spectral-spatial features, namely the Vector Similarity (VS) index, the Change Vector Intensity (CVI) index and the Correlation (COR) index. (2) The Overall Accuracy (OA) of the PNS-CFS was 94.66% and 93.59% in study areas 1 and 2, respectively. These were 7.48% and 6.02% higher than the original image data (ORI) and 7.27% and 2.39% higher than the single-dimensional feature combination (SIN-CFS). Compared to the feature combinations of VS, CVI, and COR indices (VS-CFS, CVI-COM, COR-COM), PNS-CFS had the relatively highest performance and classification accuracy. The study demonstrated that the PNS index and PNS-CFS have a high potential for image classification. Numéro de notice : A2023-059 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2022.2158948 Date de publication en ligne : 03/01/2023 En ligne : https://doi.org/10.1080/10106049.2022.2158948 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102397
in Geocarto international > vol 38 n° 1 [01/01/2023] . - n° 2158948[article]Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis / Saurabh Prasad in IEEE Transactions on geoscience and remote sensing, vol 55 n° 8 (August 2017)
[article]
Titre : Morphologically decoupled structured sparsity for rotation-invariant hyperspectral image analysis Type de document : Article/Communication Auteurs : Saurabh Prasad, Auteur ; Demetrio Labate, Auteur ; Mishan Cui, Auteur ; Yuhang Zhang, Auteur Année de publication : 2017 Article en page(s) : pp 4355 - 4366 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classificateur paramétrique
[Termes IGN] classification spectrale
[Termes IGN] décomposition d'image
[Termes IGN] image hyperspectrale
[Termes IGN] morphologie mathématique
[Termes IGN] primitive géométrique
[Termes IGN] réflectance spectraleRésumé : (Auteur) Hyperspectral imagery has emerged as a popular sensing modality for a variety of applications, and sparsity-based methods were shown to be very effective to deal with challenges coming from high dimensionality in most hyperspectral classification problems. In this paper, we challenge the conventional approach to hyperspectral classification that typically builds sparsity-based classifiers directly on spectral reflectance features or features derived directly from the data. We assert that hyperspectral image (HSI) processing can benefit very significantly by decoupling data into geometrically distinct components since the resulting decoupled components are much more suitable for sparse representation-based classifiers. Specifically, we apply morphological separation to decouple data into texture and cartoon-like components, which are sparsely represented using local discrete cosine bases and multiscale shearlets, respectively. In addition to providing a structured sparse representation, this approach allows us to build classifiers with invariance properties specific to each geometrically distinct component of the data. The experimental results using real-world HSI data sets demonstrate the efficacy of the proposed framework for classifying multichannel imagery under a variety of adverse conditions - in particular, small training sample size, additive noise, and rotational variabilities between training and test samples. Numéro de notice : A2017-496 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2017.2691607 En ligne : http://dx.doi.org./10.1109/TGRS.2017.2691607 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=86437
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 8 (August 2017) . - pp 4355 - 4366[article]Hyperspectral band selection from statistical wavelet models / Siwei Feng in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
[article]
Titre : Hyperspectral band selection from statistical wavelet models Type de document : Article/Communication Auteurs : Siwei Feng, Auteur ; Yuki Itoh, Auteur ; Mario Parente, Auteur ; Marco F. Duarte, Auteur Année de publication : 2017 Article en page(s) : pp 2111 - 2123 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chaîne de Markov
[Termes IGN] classification dirigée
[Termes IGN] classification spectrale
[Termes IGN] image à haute résolution
[Termes IGN] image hyperspectrale
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] redondance de données
[Termes IGN] signature spectraleRésumé : (Auteur) High spectral resolution brings hyperspectral images with large amounts of information, which makes these images more useful in many applications than images obtained from traditional multispectral scanners with low spectral resolution. However, the high data dimensionality of hyperspectral images increases the burden on data computation, storage, and transmission; fortunately, the high redundancy in the spectral domain allows for significant dimensionality reduction. Band selection provides a simple dimensionality reduction scheme by discarding bands that are highly redundant, thereby preserving the structure of the data set. This paper proposes a new criterion for pointwise-ranking-based band selection that uses a nonhomogeneous hidden Markov chain (NHMC) model for redundant wavelet coefficients of each hyperspectral signature. The model provides a binary multiscale label that encodes semantic features that are useful to discriminate spectral types. A band ranking score considers the average correlation among the average NHMC labels for each band. We also test richer discrete-valued label vectors that provide a more finely grained quantization of spectral fluctuations. In addition, since band selection methods based on band ranking often ignore correlations in selected bands, we study the effect of redundancy elimination, applied on the selected features, on the performance of an example classification problem. Our experimental results also include an optional redundancy elimination step and test their effect on classification performance that is based on the selected bands. The experimental results also include a comparison with several relevant supervised band selection techniques. Numéro de notice : A2017-172 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2636850 En ligne : https://doi.org/10.1109/TGRS.2016.2636850 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84717
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 4 (April 2017) . - pp 2111 - 2123[article]Extracting target spectrum for hyperspectral target detection : an adaptive weighted learning method using a self-completed background dictionary / Yubin Niu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 3 (March 2017)
[article]
Titre : Extracting target spectrum for hyperspectral target detection : an adaptive weighted learning method using a self-completed background dictionary Type de document : Article/Communication Auteurs : Yubin Niu, Auteur ; Bin Wang, Auteur Année de publication : 2017 Article en page(s) : pp 1604 - 1617 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] classification spectrale
[Termes IGN] détection de cible
[Termes IGN] image hyperspectraleRésumé : (Auteur) The accuracy of target spectra determines the performances of hyperspectral target detection (TD) algorithms. However, given the inherent spectral variability and subpixel problem in hyperspectral imagery (HSI), the target spectra obtained from a standard spectral library or pixels from images directly are in most cases different from those of the real target spectra, resulting in low detection accuracy. The problem caused by inaccurate prior target information led to recognition of a new hotspot on HSI. In this paper, an adaptive weighted learning method (AWLM) using a self-completed background dictionary (SCBD) is specifically developed to extract the accurate target spectrum for hyperspectral TD. AWLM is derived from the idea of dictionary learning algorithms, learning the specific target spectrum with target-proportion-related adaptive weights. A strategy to construct SCBD is proposed to guarantee the convergence of AWLM to the accurate target spectrum. Utilizing the extracted target spectrum with higher accuracy, conventional TD algorithms can also achieve satisfactory detection results. Experimental results on both simulated and real hyperspectral data demonstrate that the proposed method has an advantage in extracting accurate target spectrum, enabling better and more robust detection results using conventional detectors than state-of-the-art methods that also aim at the problem of inaccurate prior target information of HSI. Numéro de notice : A2017-158 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2016.2628085 En ligne : https://doi.org/10.1109/TGRS.2016.2628085 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84695
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 3 (March 2017) . - pp 1604 - 1617[article]Multiple spectral similarity metrics for surface materials identification using hyperspectral data / Rama Rao Nidamanuri in Geocarto international, vol 31 n° 7 - 8 (July - August 2016)
[article]
Titre : Multiple spectral similarity metrics for surface materials identification using hyperspectral data Type de document : Article/Communication Auteurs : Rama Rao Nidamanuri, Auteur Année de publication : 2016 Article en page(s) : pp 845 - 859 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] classification par séparateurs à vaste marge
[Termes IGN] classification spectrale
[Termes IGN] image hyperspectrale
[Termes IGN] limite de résolution spectrale
[Termes IGN] pouvoir de résolution spectrale
[Termes IGN] similitude spectraleRésumé : (Auteur) Modern hyperspectral imaging and non-imaging spectroradiometer has the capability to acquire high-resolution spectral reflectance data required for surface materials identification and mapping. Spectral similarity metrics, due to their mathematical simplicity and insensitiveness to the number of reference labelled spectra, have been increasingly used for material mapping by labelling reflectance spectra in hyperspectral data labelling. For a particular hyperspectral data set, the accuracy of spectral labelling depends considerably upon the degree of unambiguous spectral matching achieved by the spectral similarity metric used. In this work, we propose a new methodology for quantifying spectral similarity for hyperspectral data labelling for surface materials identification. Developed adopting the multiple classifier system architecture, the proposed methodology unifies into a single framework the differential performances of eight different spectral similarity metrics for the quantification of spectral matching for surface materials. The proposed methodology has been implemented on two types of hyperspectral data viz. image (airborne hyperspectral images) and non-image (library spectra) for numerous surface materials identification. Further, the performance of the proposed methodology has been compared with the support vector machines (SVM) approach, and with all the base spectral similarity metrics. The results indicate that, for the hyperspectral images, the performance of the proposed methodology is comparable with that of the SVM. For the library spectra, the proposed methodology shows a consistently higher (increase of about 30% when compared to SVM) classification accuracy. The proposed methodology has the potential to serve as a general library search method for materials identification using hyperspectral data. Numéro de notice : A2016-457 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2015.1086903 Date de publication en ligne : 30/09/2015 En ligne : http://dx.doi.org/10.1080/10106049.2015.1086903 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=81381
in Geocarto international > vol 31 n° 7 - 8 (July - August 2016) . - pp 845 - 859[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 059-2016041 RAB Revue Centre de documentation En réserve L003 Disponible Classification of hyperspectral images by exploiting spectral–spatial information of superpixel via multiple kernels / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 12 (December 2015)PermalinkClassification of remotely sensed images using the geneSIS fuzzy segmentation algorithm / Stelios Mylonas in IEEE Transactions on geoscience and remote sensing, vol 53 n° 10 (October 2015)PermalinkOn spectral unmixing resolution using extended support vector machines / Xiaofeng Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 9 (September 2015)PermalinkSpectral–spatial classification of hyperspectral images with a superpixel-based discriminative sparse model / Leyuan Fang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 8 (August 2015)PermalinkLocal binary patterns and extreme learning machine for hyperspectral imagery classification / Wei Li in IEEE Transactions on geoscience and remote sensing, vol 53 n° 7 (July 2015)PermalinkHyperspectral image classification based on three-dimensional scattering wavelet transform / Yuan Yan Tang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 5 (mai 2015)PermalinkSupervised spectral–spatial hyperspectral image classification with weighted markov random fields / Le Sun in IEEE Transactions on geoscience and remote sensing, vol 53 n° 3 (March 2015)PermalinkGabor feature-based collaborative representation for hyperspectral imagery classification / Sen Jia in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)PermalinkSparse unmixing of hyperspectral data using spectral a priori information / Wei Tang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 2 (February 2015)PermalinkAutomatic spatial–spectral feature selection for hyperspectral image via discriminative sparse multimodal learning / Qian Zhang in IEEE Transactions on geoscience and remote sensing, vol 53 n° 1 (January 2015)Permalink