Descripteur



Etendre la recherche sur niveau(x) vers le bas
Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps / Xiongfeng Yan in International journal of geographical information science IJGIS, vol 35 n° 3 (March 2021)
![]()
[article]
Titre : Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps Type de document : Article/Communication Auteurs : Xiongfeng Yan, Auteur ; Tinghua Ai, Auteur ; Min Yang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 490 - 512 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage non-dirigé
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] données vectorielles
[Termes descripteurs IGN] graphe
[Termes descripteurs IGN] mesure géométrique
[Termes descripteurs IGN] modélisation du bâti
[Termes descripteurs IGN] représentation cognitive
[Termes descripteurs IGN] représentation spatialeRésumé : (auteur) The shape of a geospatial object is an important characteristic and a significant factor in spatial cognition. Existing shape representation methods for vector-structured objects in the map space are mainly based on geometric and statistical measures. Considering that shape is complicated and cognitively related, this study develops a learning strategy to combine multiple features extracted from its boundary and obtain a reasonable shape representation. Taking building data as example, this study first models the shape of a building using a graph structure and extracts multiple features for each vertex based on the local and regional structures. A graph convolutional autoencoder (GCAE) model comprising graph convolution and autoencoder architecture is proposed to analyze the modeled graph and realize shape coding through unsupervised learning. Experiments show that the GCAE model can produce a cognitively compliant shape coding, with the ability to distinguish different shapes. It outperforms existing methods in terms of similarity measurements. Furthermore, the shape coding is experimentally proven to be effective in representing the local and global characteristics of building shape in application scenarios such as shape retrieval and matching. Numéro de notice : A2021-166 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1768260 date de publication en ligne : 25/05/2020 En ligne : https://doi.org/10.1080/13658816.2020.1768260 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97100
in International journal of geographical information science IJGIS > vol 35 n° 3 (March 2021) . - pp 490 - 512[article]Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data / Michalis A. Savelonas in Computer Vision and image understanding, vol 171 (June 2018)
![]()
[article]
Titre : Spatially sensitive statistical shape analysis for pedestrian recognition from LIDAR data Type de document : Article/Communication Auteurs : Michalis A. Savelonas, Auteur ; Ioannis Pratikakis, Auteur ; Theoharis Theoharis, Auteur ; Georgios Thanellas, Auteur ; et al., Auteur Année de publication : 2018 Article en page(s) : pp 1 - 9 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] analyse de sensibilité
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] détection de piéton
[Termes descripteurs IGN] discrétisation spatiale
[Termes descripteurs IGN] distribution de Fisher
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] échantillonnage de données
[Termes descripteurs IGN] image à basse résolution
[Termes descripteurs IGN] reconnaissance de formesRésumé : (auteur) Range-based pedestrian recognition is instrumental towards the development of autonomous driving and driving assistance systems. This work introduces encoding methods for pedestrian recognition, based on statistical shape analysis of 3D LIDAR data. The proposed approach has two variants, based on the encoding of local shape descriptors either in a spatially agnostic or spatially sensitive fashion. The latter method derives more detailed cues, by enriching the ‘gross’ information reflected by overall statistics of local shape descriptors, with ‘fine-grained’ information reflected by statistics associated with spatial clusters. Experiments on artificial LIDAR datasets, which include challenging samples, as well as on a large scale dataset of real LIDAR data, lead to the conclusion that both variants of the proposed approach (i) obtain high recognition accuracy, (ii) are robust against low-resolution sampling, (iii) are robust against increasing distance, and (iv) are robust against non-standard shapes and poses. On the other hand, the spatially-sensitive variant is more robust against partial occlusion and bad clustering. Numéro de notice : A2018-586 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.cviu.2018.06.001 date de publication en ligne : 15/06/2018 En ligne : https://www.sciencedirect.com/science/article/pii/S1077314218300766 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92439
in Computer Vision and image understanding > vol 171 (June 2018) . - pp 1 - 9[article]
Titre : Introduction to Deep Learning : From Logical Calculus to Artificial Intelligence Type de document : Monographie Auteurs : Sandro Skansi, Auteur Editeur : Springer Nature Année de publication : 2018 Importance : 196 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-3-319-73004-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] estimation par noyau
[Termes descripteurs IGN] matrice de covariance
[Termes descripteurs IGN] Perceptron multicouche
[Termes descripteurs IGN] Python (langage de programmation)
[Termes descripteurs IGN] régression logistique
[Termes descripteurs IGN] réseau neuronal artificiel
[Termes descripteurs IGN] réseau neuronal convolutif
[Termes descripteurs IGN] sciences cognitives
[Termes descripteurs IGN] théorie des probabilitésRésumé : (auteur) This textbook presents a concise, accessible and engaging first introduction to deep learning, offering a wide range of connectionist models which represent the current state-of-the-art. The text explores the most popular algorithms and architectures in a simple and intuitive style, explaining the mathematical derivations in a step-by-step manner. The content coverage includes convolutional networks, LSTMs, Word2vec, RBMs, DBNs, neural Turing machines, memory networks and autoencoders. Numerous examples in working Python code are provided throughout the book, and the code is also supplied separately at an accompanying website.
Topics and features:
Introduces the fundamentals of machine learning, and the mathematical and computational prerequisites for deep learning
Discusses feed-forward neural networks, and explores the modifications to these which can be applied to any neural network
Examines convolutional neural networks, and the recurrent connections to a feed-forward neural network
Describes the notion of distributed representations, the concept of the autoencoder, and the ideas behind language processing with deep learning
Presents a brief history of artificial intelligence and neural networks, and reviews interesting
open research problems in deep learning and connectionism
This clearly written and lively primer on deep learning is essential reading for graduate and advanced undergraduate students of computer science, cognitive science and mathematics, as well as fields such as linguistics, logic, philosophy, and psychology.Note de contenu : 1- From Logic to Cognitive Science
2- Mathematical and Computational Prerequisites
3- Machine Learning Basics
4- Feedforward Neural Networks
5- Modifications and Extensions to a Feed-Forward Neural Network
6- Convolutional Neural Networks
7- Recurrent Neural Networks
8- Autoencoders
9- Neural Language Models
10- An Overview of Different Neural Network Architectures
11- ConclusionNuméro de notice : 25787 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/MATHEMATIQUE Nature : Monographie En ligne : https://doi.org/10.1007/978-3-319-73004-2 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94990 Unsupervised feature learning for land-use scene recognition / Jiayuan Fan in IEEE Transactions on geoscience and remote sensing, vol 55 n° 4 (April 2017)
![]()
[article]
Titre : Unsupervised feature learning for land-use scene recognition Type de document : Article/Communication Auteurs : Jiayuan Fan, Auteur ; Tao Chen, Auteur ; Shijian Lu, Auteur Année de publication : 2017 Article en page(s) : pp 2250 - 2261 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse discriminante
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] image proche infrarouge
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] invariant
[Termes descripteurs IGN] pouvoir de résolution géométrique
[Termes descripteurs IGN] reconnaissance automatique
[Termes descripteurs IGN] Singapour
[Termes descripteurs IGN] utilisation du solRésumé : (Auteur) This paper proposes a novel unsupervised feature learning algorithm for land-use scene recognition on very high resolution remote sensing imagery. The proposed technique utilizes a multipath sparse coding architecture in order to capture multiple aspects of discriminative structures within complex remote sensing sceneries. Unlike the previous sparse coding and bag-of-visual-words-based techniques that rely on the handcrafted feature descriptors such as scale-invariant feature transform, the proposed technique extracts dense low-level features from the raw data, including the visual (RGB) data and near-infrared (NIR) data, using image patches of varying sizes at different layers. The proposed technique has been evaluated on three data sets, including the 21-category UC Merced landuse RGB data set with a 1-ft spatial resolution, the 9-category ground scene RGB-NIR data set, and the 10-category Singapore land-use RGB-NIR data set with a 0.5-m spatial resolution. The experimental results show that the proposed technique outperforms the state-of-the-art methods. Numéro de notice : A2107-174 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2016.2640186 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84723
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 4 (April 2017) . - pp 2250 - 2261[article]Adaptive spectral–spatial compression of hyperspectral image with sparse representation / Wei Fu in IEEE Transactions on geoscience and remote sensing, vol 55 n° 2 (February 2017)
![]()
[article]
Titre : Adaptive spectral–spatial compression of hyperspectral image with sparse representation Type de document : Article/Communication Auteurs : Wei Fu, Auteur ; Shutao Li, Auteur ; Leyuan Fang, Auteur ; Jon Atli Benediktsson, Auteur Année de publication : 2017 Article en page(s) : pp 671 - 682 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] codage
[Termes descripteurs IGN] compression d'image
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] pixel
[Termes descripteurs IGN] représentation parcimonieuse
[Termes descripteurs IGN] zone homogèneRésumé : (Auteur) Sparse representation (SR) can transform spectral signatures of hyperspectral pixels into sparse coefficients with very few nonzero entries, which can efficiently be used for compression. In this paper, a spectral-spatial adaptive SR (SSASR) method is proposed for hyperspectral image (HSI) compression by taking advantage of the spectral and spatial information of HSIs. First, we construct superpixels, i.e., homogeneous regions with adaptive sizes and shapes, to describe HSIs. Since homogeneous regions usually consist of similar pixels, pixels within each superpixel will be similar and share similar spectral signatures. Then, the spectral signatures of each superpixel can be simultaneously coded in the SR model to exploit their joint sparsity. Since different superpixels generally have different performances of SR, their rate-distortion performances in the sparse coding will be different. To achieve the best possible overall rate-distortion performance, an adaptive coding scheme is introduced to adaptively assign distortions to superpixels. Finally, the obtained sparse coefficients are quantized and entropy coded and constitute the final bitstream with the coded superpixel map. The experimental results over several HSIs show that the proposed SSASR method outperforms some state-of-the-art HSI compression methods in terms of the rate-distortion and spectral fidelity performances. Numéro de notice : A2017-141 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern En ligne : http://dx.doi.org/10.1109/TGRS.2016.2613848 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=84629
in IEEE Transactions on geoscience and remote sensing > vol 55 n° 2 (February 2017) . - pp 671 - 682[article]PermalinkSparsity, redundancy and robustness in artificial neural networks for learning and memory / Philippe Tigréat (2017)
PermalinkDiscriminative-dictionary-learning-based multilevel point-cluster features for ALS point-cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 12 (December 2016)
PermalinkSparse output coding for scalable visual recognition / Bin Zhao in International journal of computer vision, vol 119 n° 1 (August 2016)
PermalinkA multilevel point-cluster-based discriminative feature for ALS point cloud classification / Zhenxin Zhang in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkToward a generalizable image representation for large-scale change detection : application to generic damage analysis / Lionel Gueguen in IEEE Transactions on geoscience and remote sensing, vol 54 n° 6 (June 2016)
PermalinkContributions à la segmentation non supervisée d'images hyperspectrales : trois approches algébriques et géométriques / Saadallah El Asmar (2016)
PermalinkPermalinkPermalinkVector-lifting schemes for lossless coding and progressive archival of multispectral images / A. Benazza-Benyahia in IEEE Transactions on geoscience and remote sensing, vol 40 n° 9 (September 2002)
Permalink