Descripteur
Termes IGN > sciences humaines et sociales > psychologie > psychologie sociale > comportement
comportement |
Documents disponibles dans cette catégorie (84)



Etendre la recherche sur niveau(x) vers le bas
An improved optimization model for crowd evacuation considering individual exit choice preference / Fei Gao in Transactions in GIS, vol 26 n° 7 (November 2022)
![]()
[article]
Titre : An improved optimization model for crowd evacuation considering individual exit choice preference Type de document : Article/Communication Auteurs : Fei Gao, Auteur ; Zhiqiang Du, Auteur ; Martin Werner, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 2850 - 2873 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] comportement
[Termes IGN] événement
[Termes IGN] gestion de crise
[Termes IGN] optimisation (mathématiques)
[Termes IGN] optimisation par essaim de particules
[Termes IGN] planification
[Termes IGN] secours d'urgenceRésumé : (auteur) Guidance-assisted crowd evacuation is a process of combining individual exit choice behavior with managers'exit assignment control. The knowledge of individual exit choice preference is of great significance for optimizing global exit assignment planning. This study proposes an improved optimization model for crowd evacuation by integrating the individual-level exit choice preference analysis with system-level exit assignment optimization to represent more realistic crowd evacuation decisions. First, the impact factors of individual exit choice behavior are considered in a mixed logit model to predict the probability of each individual choosing each exit in specific situations. Second, a preference-based exit filtering strategy is designed to analyze the sensible alternative exits for individuals or groups in multi-scale evacuation cells. Finally, to pursue optimal exit assignment planning, a multi-objective particle swarm optimization algorithm and an improved social force model are adopted to simulate the process of crowd evacuation and evaluate the performance of the specific exit assignment plans. The case study of an outdoor multiple-exit scenario in Xi'an, China, indicates that the proposed model can help managers to understand the heterogeneity of individual evacuation behaviors. Furthermore, it will support more reliable and realistic evacuation decisions in real-life situations than conventional plans that typically implement the top-n strategy. Numéro de notice : A2022-833 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12984 Date de publication en ligne : 04/09/2022 En ligne : https://doi.org/10.1111/tgis.12984 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102216
in Transactions in GIS > vol 26 n° 7 (November 2022) . - pp 2850 - 2873[article]Location-aware neural graph collaborative filtering / Shengwen Li in International journal of geographical information science IJGIS, vol 36 n° 8 (August 2022)
![]()
[article]
Titre : Location-aware neural graph collaborative filtering Type de document : Article/Communication Auteurs : Shengwen Li, Auteur ; Chenpeng Sun, Auteur ; Renyao Chen, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1550 - 1574 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] comportement
[Termes IGN] données localisées des bénévoles
[Termes IGN] filtrage d'information
[Termes IGN] jeu de données
[Termes IGN] noeud
[Termes IGN] point d'intérêt
[Termes IGN] réseau neuronal de graphesRésumé : (auteur) Collaborative filtering (CF) is initiated by representing users and items as vectors and seeks to describe the relationship between users and items at a profound level, thus predicting users’ preferred behavior. To address the issue that previous research ignored higher-order geographical interactions hidden in users’ historical behaviors, this paper proposes a location-aware neural graph collaborative filtering model (LA-NGCF), which incorporates location information of items for improving prediction performance. The model characterizes the interactions between items based on spatial decay law from a graph perspective and designs two strategies to capture the interaction effects of users and items considering node heterogeneity. An optimized loss function with spatial distances of items is also developed in the model. Extensive experiments are conducted on three publicly available real-world datasets to examine the effectiveness of our model. Results show that LA-NGCF achieves competitive performances compared with several state-of-the-art models, which suggests that location information of items is beneficial for improving the performance of personalized recommendations. This paper offers an approach to incorporate weighted interactions between items into CF algorithms and enriches the methods of utilizing geographical information for artificial intelligence applications. Numéro de notice : A2022-592 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2073594 Date de publication en ligne : 11/05/2022 En ligne : https://doi.org/10.1080/13658816.2022.2073594 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101292
in International journal of geographical information science IJGIS > vol 36 n° 8 (August 2022) . - pp 1550 - 1574[article]Visualising post-disaster damage on maps: a user study / Thomas Candela in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : Visualising post-disaster damage on maps: a user study Type de document : Article/Communication Auteurs : Thomas Candela, Auteur ; Matthieu Péroche, Auteur ; Arnaud Sallaberry, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1364 - 1393 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes IGN] carte de répartition par points
[Termes IGN] catastrophe naturelle
[Termes IGN] comportement
[Termes IGN] dommage matériel
[Termes IGN] enquête
[Termes IGN] lecture de carte
[Termes IGN] oculométrie
[Termes IGN] psychologie cognitive
[Termes IGN] représentation cartographique
[Termes IGN] sémiologie graphique
[Termes IGN] tessellation
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) The mapping of the damage caused by natural disasters is a crucial step in deciding on the actions to take at the international, national, and local levels. The large variety of representations that we have observed leads to problems of transfer and variations in analysis. In this article, we propose a representation, Regular Dot map (RD), and we compare it to 4 others routinely used to visualise post-disaster damage. Our comparison is based on a user study in which a set of participants carried out various tasks on multiple datasets using the various visualisations. We then analysed the behaviour during the experiment using three approaches: (1) quantitative analysis of user answers according to the reality on the ground, (2) quantitative analysis of user preferences in terms of perceived effectiveness and appearance, and (3) qualitative analysis of the data collected using an eye tracker. The results of this study lead us to believe that RD is the best compromise in terms of effectiveness among the various representations studied. Numéro de notice : A2022-492 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2022.2063872 Date de publication en ligne : 19/04/2022 En ligne : https://doi.org/10.1080/13658816.2022.2063872 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100971
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1364 - 1393[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022071 SL Revue Centre de documentation Revues en salle Disponible How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? / Yawei Xu in Cartography and Geographic Information Science, vol 49 n° 3 (May 2022)
![]()
[article]
Titre : How do voice-assisted digital maps influence human wayfinding in pedestrian navigation? Type de document : Article/Communication Auteurs : Yawei Xu, Auteur ; Tong Qin, Auteur ; Yulin Wu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 271 - 287 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie numérique
[Termes IGN] acquisition de connaissances
[Termes IGN] cognition
[Termes IGN] comportement
[Termes IGN] itinéraire piétionnier
[Termes IGN] navigation pédestre
[Termes IGN] oculométrie
[Termes IGN] orientation
[Termes IGN] Pékin (Chine)
[Termes IGN] questionnaireRésumé : (auteur) Voice-assisted digital maps have become mainstream navigation aids for pedestrian navigation. Although these maps are widely studied and applied, it is still unclear how they affect human behavior and spatial knowledge acquisition. In this study, we recruited thirty-three college students to carry out an outdoor wayfinding experiment. We compared the effects of voice-assisted digital maps with those of digital maps without voice instructions and paper maps by using eye tracking, sketch maps, questionnaires and interviews. The results show that, compared to the other map types, voice-assisted digital maps can help users reach their destinations more quickly and pay more attention to moving objects, thereby increasing the comfort levels of participants. However, the efficiency of voice-assisted maps on route memory tasks does not rival that of paper maps. Overall, the use of voice-assisted digital maps saves time but may reduce pedestrians’ spatial knowledge acquisition. The results of this study reveal the influence of voice on pedestrian wayfinding and deepen the scientific understanding of the multimedia navigation mode in shaping human spatial ability. Numéro de notice : A2022-295 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2021.2017798 Date de publication en ligne : 13/01/2022 En ligne : https://doi.org/10.1080/15230406.2021.2017798 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100347
in Cartography and Geographic Information Science > vol 49 n° 3 (May 2022) . - pp 271 - 287[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2022031 SL Revue Centre de documentation Revues en salle Disponible Graph neural network based model for multi-behavior session-based recommendation / Bo Yu in Geoinformatica, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Graph neural network based model for multi-behavior session-based recommendation Type de document : Article/Communication Auteurs : Bo Yu, Auteur ; Ruoqian Zhang, Auteur ; Wei Chen, Auteur ; Junhua Fang, Auteur Année de publication : 2022 Article en page(s) : pp 429 - 447 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] comportement
[Termes IGN] consommation
[Termes IGN] modèle de simulation
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau sémantique
[Termes IGN] service fondé sur la positionMots-clés libres : session Résumé : (auteur) Multi-behavior session-based recommendation aims to predict the next item, such as a location-based service (LBS) or a product, to be interacted by a specific behavior type (e.g., buy or click) in a session involving multiple types of behaviors. State-of-the-art methods generally model multi-behavior dependencies in item-level, but ignore the potential of discovering useful patterns of multi-behavior transition through feature-level representation learning. Besides, sequential and non-sequential patterns should be properly fused in session modeling to capture dynamic interests within the session. To this end, this paper proposes a Graph Neural Network based Hybrid Model GNNH, which enables feature-level deeper representations of multi-behavior interaction sequences for session-based recommendation. Specifically, we first construct multi-relational item graph (MRIG) and feature graph (MRFG) based on session sequences. On top of the MRIG and MRFG, our model takes advantage of GNN to capture item and feature representations, such that global item-to-item and feature-to-feature relations are fully preserved. Afterwards, each multi-behavior session is modeled by a seamless fusion of interacted item and feature representations, where self-attention and mean-pooling are used to obtain sequential and non-sequential patterns simultaneously. Experiments on two real datasets show that the GNNH model significantly outperforms the state-of-the-art methods. Numéro de notice : A2022-326 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/INFORMATIQUE Nature : Article DOI : 10.1007/s10707-021-00439-w Date de publication en ligne : 29/05/2021 En ligne : https://doi.org/10.1007/s10707-021-00439-w Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100489
in Geoinformatica > vol 26 n° 2 (April 2022) . - pp 429 - 447[article]Assessing COVID-induced changes in spatiotemporal structure of mobility in the United States in 2020: a multi-source analytical framework / Evgeny Noi in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
PermalinkChanging mobility patterns in the Netherlands during COVID-19 outbreak / Sander Van Der Drift in Journal of location-based services, vol 16 n° 1 (March 2022)
PermalinkRaw GIS to 3D road modeling for real-time traffic simulation / Yacine Amara in The Visual Computer, vol 38 n° 1 (January 2022)
PermalinkContextual location recommendation for location-based social networks by learning user intentions and contextual triggers / Seyyed Mohammadreza Rahimi in Geoinformatica, vol 26 n° 1 (January 2022)
PermalinkFrom artificial intelligence to artificial human interaction : understand consumer acceptance of smart objects via mental representations of future interactions / Mohamed Hakimi (2022)
PermalinkIdentifying map users with eye movement data from map-based spatial tasks: user privacy concerns / Hua Liao in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
PermalinkModelling spatial processes in quantitative human geography / A. Stewart Fotheringham in Annals of GIS, vol 28 n° 1 (January 2022)
PermalinkSimulation of dispersion effects by considering interactions of pedestrians and bicyclists using an agent space model / Mingwei Liu in Computers, Environment and Urban Systems, vol 91 (January 2022)
PermalinkModeling transit-assisted hurricane evacuation through socio-spatial networks / Yan Yang in International journal of geographical information science IJGIS, vol 35 n° 12 (December 2021)
PermalinkEvaluating the effectiveness of different cartographic design variants for influencing route choice / Stefan Fuest in Cartography and Geographic Information Science, vol 48 n° 2 (March 2021)
Permalink