Descripteur



Etendre la recherche sur niveau(x) vers le bas
A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery / Lucas Prado Osco in ISPRS Journal of photogrammetry and remote sensing, vol 174 (April 2021)
![]()
[article]
Titre : A CNN approach to simultaneously count plants and detect plantation-rows from UAV imagery Type de document : Article/Communication Auteurs : Lucas Prado Osco, Auteur ; Mauro Dos Santos de Arruda, Auteur ; Diogo Nunes Gonçalves, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] carte agricole
[Termes descripteurs IGN] Citrus sinensis
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] cultures
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] extraction de la végétation
[Termes descripteurs IGN] gestion durable
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] maïs (céréale)
[Termes descripteurs IGN] rendement agricoleRésumé : (auteur) Accurately mapping croplands is an important prerequisite for precision farming since it assists in field management, yield-prediction, and environmental management. Crops are sensitive to planting patterns and some have a limited capacity to compensate for gaps within a row. Optical imaging with sensors mounted on Unmanned Aerial Vehicles (UAV) is a cost-effective option for capturing images covering croplands nowadays. However, visual inspection of such images can be a challenging and biased task, specifically for detecting plants and rows on a one-step basis. Thus, developing an architecture capable of simultaneously extracting plant individually and plantation-rows from UAV-images is yet an important demand to support the management of agricultural systems. In this paper, we propose a novel deep learning method based on a Convolutional Neural Network (CNN) that simultaneously detects and geolocates plantation-rows while counting its plants considering highly-dense plantation configurations. The experimental setup was evaluated in (a) a cornfield (Zea mays L.) with different growth stages (i.e. recently planted and mature plants) and in a (b) Citrus orchard (Citrus Sinensis Pera). Both datasets characterize different plant density scenarios, in different locations, with different types of crops, and from different sensors and dates. This scheme was used to prove the robustness of the proposed approach, allowing a broader discussion of the method. A two-branch architecture was implemented in our CNN method, where the information obtained within the plantation-row is updated into the plant detection branch and retro-feed to the row branch; which are then refined by a Multi-Stage Refinement method. In the corn plantation datasets (with both growth phases – young and mature), our approach returned a mean absolute error (MAE) of 6.224 plants per image patch, a mean relative error (MRE) of 0.1038, precision and recall values of 0.856, and 0.905, respectively, and an F-measure equal to 0.876. These results were superior to the results from other deep networks (HRNet, Faster R-CNN, and RetinaNet) evaluated with the same task and dataset. For the plantation-row detection, our approach returned precision, recall, and F-measure scores of 0.913, 0.941, and 0.925, respectively. To test the robustness of our model with a different type of agriculture, we performed the same task in the citrus orchard dataset. It returned an MAE equal to 1.409 citrus-trees per patch, MRE of 0.0615, precision of 0.922, recall of 0.911, and F-measure of 0.965. For the citrus plantation-row detection, our approach resulted in precision, recall, and F-measure scores equal to 0.965, 0.970, and 0.964, respectively. The proposed method achieved state-of-the-art performance for counting and geolocating plants and plant-rows in UAV images from different types of crops. The method proposed here may be applied to future decision-making models and could contribute to the sustainable management of agricultural systems. Numéro de notice : A2021-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2021.01.024 date de publication en ligne : 13/02/2021 En ligne : https://doi.org/10.1016/j.isprsjprs.2021.01.024 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97171
in ISPRS Journal of photogrammetry and remote sensing > vol 174 (April 2021) . - pp 1 - 17[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021041 SL Revue Centre de documentation Revues en salle Disponible 081-2021043 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A density-based algorithm for the detection of individual trees from LiDAR data / Melissa Latella in Remote sensing, Vol 13 n° 2 (January 2021)
![]()
[article]
Titre : A density-based algorithm for the detection of individual trees from LiDAR data Type de document : Article/Communication Auteurs : Melissa Latella, Auteur ; Fabio Sola, Auteur ; Carlo Camporeal, Auteur Année de publication : 2021 Article en page(s) : n° 322 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] densité de la végétation
[Termes descripteurs IGN] détection d'arbres
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] forêt de feuillus
[Termes descripteurs IGN] hauteur des arbres
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] sous-étageRésumé : (auteur) Nowadays, LiDAR is widely used for individual tree detection, usually providing higher accuracy in coniferous stands than in deciduous ones, where the rounded-crown, the presence of understory vegetation, and the random spatial tree distribution may affect the identification algorithms. In this work, we propose a novel algorithm that aims to overcome these difficulties and yield the coordinates and the height of the individual trees on the basis of the point density features of the input point cloud. The algorithm was tested on twelve deciduous areas, assessing its performance on both regular-patterned plantations and stands with randomly distributed trees. For all cases, the algorithm provides high accuracy tree count (F-score > 0.7) and satisfying stem locations (position error around 1.0 m). In comparison to other common tools, the algorithm is weakly sensitive to the parameter setup and can be applied with little knowledge of the study site, thus reducing the effort and cost of field campaigns. Furthermore, it demonstrates to require just 2 points·m−2 as minimum point density, allowing for the analysis of low-density point clouds. Despite its simplicity, it may set the basis for more complex tools, such as those for crown segmentation or biomass computation, with potential applications in forest modeling and management. Numéro de notice : A2021-196 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.3390/rs13020322 date de publication en ligne : 19/01/2021 En ligne : https://doi.org/10.3390/rs13020322 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97146
in Remote sensing > Vol 13 n° 2 (January 2021) . - n° 322[article]Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery / Debasish Chakraborty in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Steps-based tree crown delineation by analyzing local minima for counting the trees in very high resolution satellite imagery Type de document : Article/Communication Auteurs : Debasish Chakraborty, Auteur ; Pranshu Kumar, Auteur Année de publication : 2021 Article en page(s) : pp 110 - 120 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arborescence
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] détection de contours
[Termes descripteurs IGN] houppier
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image à très haute résolution
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image Worldview
[Termes descripteurs IGN] itération
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) In this study primarily, high-resolution (HR) satellite image is segmented into tree and non-tree regions. Thereafter plots the local minima in the segmented image. Point surrounded by the higher intensity values is called as local minima. The local minimum is the starting point for marking the tree crown boundary. The adjacent darker points along the local minima are plotted in a specific direction for marking the tree crown boundary. Subsequently a seven steps iterative procedure is followed for delineating and counting the tree crowns. The validation of the method is done on WorldView-2 data. Numéro de notice : A2021-054 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1611947 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1611947 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96779
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 110 - 120[article]Counting of grapevine berries in images via semantic segmentation using convolutional neural networks / Laura Zabawa in ISPRS Journal of photogrammetry and remote sensing, vol 164 (June 2020)
![]()
[article]
Titre : Counting of grapevine berries in images via semantic segmentation using convolutional neural networks Type de document : Article/Communication Auteurs : Laura Zabawa, Auteur ; Anna Kicherer, Auteur ; Lasse Klingbeil, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 73 - 83 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] échantillon
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] extraction semi-automatique
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] rendement agricole
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] traitement d'image
[Termes descripteurs IGN] viticultureRésumé : (auteur) The extraction of phenotypic traits is often very time and labour intensive. Especially the investigation in viticulture is restricted to an on-site analysis due to the perennial nature of grapevine. Traditionally skilled experts examine small samples and extrapolate the results to a whole plot. Thereby different grapevine varieties and training systems, e.g. vertical shoot positioning (VSP) and semi minimal pruned hedges (SMPH) pose different challenges.
In this paper we present an objective framework based on automatic image analysis which works on two different training systems. The images are collected semi automatic by a camera system which is installed in a modified grape harvester. The system produces overlapping images from the sides of the plants. Our framework uses a convolutional neural network to detect single berries in images by performing a semantic segmentation. Each berry is then counted with a connected component algorithm. We compare our results with the Mask-RCNN, a state-of-the-art network for instance segmentation and with a regression approach for counting. The experiments presented in this paper show that we are able to detect green berries in images despite of different training systems. We achieve an accuracy for the berry detection of 94.0% in the VSP and 85.6% in the SMPH.Numéro de notice : A2020-252 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.04.002 date de publication en ligne : 22/04/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.04.002 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94996
in ISPRS Journal of photogrammetry and remote sensing > vol 164 (June 2020) . - pp 73 - 83[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020061 SL Revue Centre de documentation Revues en salle Disponible 081-2020063 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020062 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Cattle detection and counting in UAV images based on convolutional neural networks / Wen Shao in International Journal of Remote Sensing IJRS, vol 41 n° 1 (01 - 08 janvier 2020)
![]()
[article]
Titre : Cattle detection and counting in UAV images based on convolutional neural networks Type de document : Article/Communication Auteurs : Wen Shao, Auteur ; Rei Kawakami, Auteur ; Ryota Yoshihashi, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 31 - 52 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] bovin
[Termes descripteurs IGN] chevauchement
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] comptage
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] modélisation 3DRésumé : (auteur) For assistance with grazing cattle management, we propose a cattle detection and counting system based on Convolutional Neural Networks (CNNs) using aerial images taken by an Unmanned Aerial Vehicle (UAV). To improve detection performance, we take advantage of the fact that, with UAV images, the approximate size of the objects can be predicted when the UAV’s height from the ground can be assumed to be roughly constant. We resize an image to be fed into the CNN to an optimum resolution determined by the object size and the down-sampling rate of the network, both in training and testing. To avoid repetition of counting in images that have large overlaps to adjacent ones and to obtain the accurate number of cattle in an entire area, we utilize a three-dimensional model reconstructed by the UAV images for merging the detection results of the same target. Experiments show that detection performance is greatly improved when using the optimum input resolution with an F-measure of 0.952, and counting results are close to the ground truths when the movement of cattle is approximately stationary compared to that of the UAV’s. Numéro de notice : A2020-209 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/01431161.2019.1624858 date de publication en ligne : 11/06/2019 En ligne : https://doi.org/10.1080/01431161.2019.1624858 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94891
in International Journal of Remote Sensing IJRS > vol 41 n° 1 (01 - 08 janvier 2020) . - pp 31 - 52[article]PermalinkDétection de changement par imagerie radar sur les zones naturelles et agricoles en milieu tropical / Jérôme Lebreton (2018)
PermalinkPermalinkWildlife management using aiborne Lidar / Joan Hagar in GIM international [en ligne], vol 30 n° 7 (July 2016)
PermalinkCaractérisation de vergers à partir de données photographiques hautes précisions et lidar / Jean-François Fayel (2015)
PermalinkPermalink