Descripteur



Etendre la recherche sur niveau(x) vers le bas
A web-based spatial decision support system for monitoring the risk of water contamination in private wells / Yu Lan in Annals of GIS, vol 26 n° 3 (July 2020)
![]()
[article]
Titre : A web-based spatial decision support system for monitoring the risk of water contamination in private wells Type de document : Article/Communication Auteurs : Yu Lan, Auteur ; Wenwu Tang, Auteur ; Samantha Dye, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 293 - 309 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] arsenic
[Termes descripteurs IGN] base de données localisées
[Termes descripteurs IGN] Caroline du Nord (Etats-Unis)
[Termes descripteurs IGN] contamination
[Termes descripteurs IGN] eau souterraine
[Termes descripteurs IGN] interpolation spatiale
[Termes descripteurs IGN] krigeage
[Termes descripteurs IGN] pollution des eaux
[Termes descripteurs IGN] prévention des risques
[Termes descripteurs IGN] puits
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] surveillance sanitaire
[Termes descripteurs IGN] système d'aide à la décision
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] WebSIGRésumé : (auteur) Long-term exposure to contaminated water can cause health effects, such as cancer. Accurate spatial prediction of inorganic compounds (e.g. arsenic) and pathogens in groundwater is critical for water supply management. Ideally, environmental health agencies would have access to an early warning system to alert well owners of risks of such contamination. The estimation and dissemination of these risks can be facilitated by the combination of Geographic Information Systems and spatial analysis capabilities – i.e., spatial decision support system (SDSS). However, the use of SDSS, especially web-based SDSS, is rare for spatially explicit studies of drinking water quality of private wells. In this study, we introduce the interactive Well Water Risk Estimation(iWWRE), a web-based SDSS to facilitate the monitoring of water contamination in private wells across Gaston County, North Carolina (US). Our system implements geoprocessing web services and generates dynamic spatial analysis results based on a database of private wells. Environmental health scientists using our system can conduct fine-grained spatial interpolation on 1) a particular type of contaminant such as arsenic, 2) on various subsets through a temporal query. Visuals consist of an estimation map, cross validation information, Kriging variance and contour lines that delineate areas with maximum contaminant levels (MCL), as set by the US Environmental Protection Agency (EPA). Our web-based SDSS was developed jointly with environmental health specialists who found it particularly critical for the monitoring of local contamination trends, and a useful tool to reach out to private well users in highly elevated contaminated areas. Numéro de notice : A2020-583 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1798508 date de publication en ligne : 30/07/2020 En ligne : https://doi.org/10.1080/19475683.2020.1798508 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95905
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 293 - 309[article]Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils / Haein Shin in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
![]()
[article]
Titre : Spectral Interference of Heavy Metal Contamination on Spectral Signals of Moisture Content for Heavy Metal Contaminated Soils Type de document : Article/Communication Auteurs : Haein Shin, Auteur ; Jaehyung Yu, Auteur ; Lei Wang, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 2266 - 2275 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] arsenic
[Termes descripteurs IGN] bande spectrale
[Termes descripteurs IGN] bruit blanc
[Termes descripteurs IGN] contamination
[Termes descripteurs IGN] cuivre
[Termes descripteurs IGN] dégradation du signal
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] humidité du sol
[Termes descripteurs IGN] interférence
[Termes descripteurs IGN] métal lourd
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] plomb
[Termes descripteurs IGN] pollution des sols
[Termes descripteurs IGN] signature spectraleRésumé : (auteur) This article examined the spectral interference by heavy metal on the spectral signal of moisture content of heavy metal contaminated soils. Soil samples were collected from an abandoned mine area, and the chemical analysis revealed extremely high contamination amount of copper (Cu), zinc (Zn), arsenic (As), cadmium (Cd), and lead (Pb). The mineralogical analysis showed that the spectral signature of the heavy metal contaminated soils was manifested by secondary minerals. Water content suppressed the spectral reflectance of the soil samples but increased the absorption depths. Although a regression model can predict moisture content using the magnitude of the water absorption feature, the accuracy was much lower when the heavy metal concentration was extremely high. It indicates that geochemical reactions between the heavy metal cation and iron oxide/clay minerals may have affected the spectral responses of the contaminated soils at the water absorption bands. Our model also showed that there was a shift of the absorption features of moisture content if the heavy metal contamination level went up. Unlike normal soils, the absorption features of clay minerals and ferric iron were not able to accurately predict moisture in highly contaminated soils. Given the fact that the spectral bands selected in this article were associated with water absorption, the findings from this article may only be useful to a drone-based low-altitude remote sensing of soil moisture content. Numéro de notice : A2020-193 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2946297 date de publication en ligne : 31/10/2019 En ligne : https://doi.org/10.1109/TGRS.2019.2946297 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94860
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 4 (April 2020) . - pp 2266 - 2275[article]Exploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons / Guillaume Lassalle (2019)
![]()
Titre : Exploitation of hyperspectral data for assessing vegetation health under exposure to petroleum hydrocarbons Type de document : Thèse/HDR Auteurs : Guillaume Lassalle, Auteur ; Arnaud Elger, Directeur de thèse ; Sophie Fabre, Directeur de thèse Editeur : Toulouse : Université Fédérale Toulouse Midi-Pyrénées Année de publication : 2019 Autre Editeur : Toulouse : Institut Supérieur de l’Aéronautique et de l’Espace Importance : 277 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse en vue de l'obtention du Doctorat de l'Université de Toulouse délivré par l'Institut Supérieur de l’Aéronautique et de l’Espace, spécialité : Surfaces et interfaces continentales, Hydrologie Agrosystèmes, écosystèmes et environnementLangues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] contamination
[Termes descripteurs IGN] feuille (végétation)
[Termes descripteurs IGN] hydrocarbure
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] indice de végétation
[Termes descripteurs IGN] modèle de transfert radiatif
[Termes descripteurs IGN] pollution des sols
[Termes descripteurs IGN] prospection pétrolière
[Termes descripteurs IGN] réflectance spectrale
[Termes descripteurs IGN] régression multiple
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] surveillance de la végétationIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Oil exploration and contamination monitoring remain limited in regions covered by vegetation. Natural seepages and oil leakages due to facility failures are often masked by the foliage, making ineffective the current technologies used for detecting crude oil and petroleum products. However, the exposure of vegetation to oil affects its health and, consequently, its optical properties in the [400:2500] nm domain. This suggest being able to detect seepages and leakages indirectly, by analyzing vegetation health through its spectral reflectance. Based on this assumption, this thesis evaluates the potential of airborne hyperspectral imagery with high spatial resolution for detecting and quantifying oil contamination in vegetated regions. To achieve this, a three-step multiscale approach was adopted. The first step aimed at developing a method for detecting and characterizing the contamination under controlled conditions, by exploiting the optical properties of Rubus fruticosus L. The proposed method combines 14 vegetation indices in classification and allows detecting various oil contaminants accurately, from leaf to canopy scale. Its use under natural conditions was validated on a contaminated mud pit colonized by the same species. During the second step, a method for quantifying total petroleum hydrocarbons, based on inverting the PROSPECT model, was developed. The method exploits the pigment content of leaves, estimated from their spectral signature, for predicting the level of hydrocarbon contamination in soils accurately. The last step of the approach demonstrated the robustness of the two methods using airborne imagery. They proved performing for detecting and quantifying mud pit contamination. Another method of quantification, based on multiple regression, was proposed. At the end of this thesis, the three methods proposed were validated for use both on the field, at leaf and canopy scales, and on airborne hyperspectral images with high spatial resolution. Their performances depend however on the species, the season and the level of soil contamination. A similar approach was conducted under tropical conditions, allowing the development of a method for quantifying the contamination adapted to this context. In a perspective of operational use, an important effort is still required for extending the scope of the methods to other contexts and for anticipating their use on satellite- and drone-embedded hyperspectral sensors. Finally, the contribution of active remote sensing (radar and LiDAR) should be considered in further research, in order to overcome some of the limits specific to passive optical remote sensing. Note de contenu : General introduction
1- State-of-the-art of passive hyperspectral remote sensing for oil exploration and contamination monitoring in vegetated regions
2- Development of methods for detecting and quantifying oil contamination based on vegetation optical properties, under controlled conditions
3- Application and evaluation of the methods under natural conditions, from field scale to airborne hyperspectral imagery
General conclusionNuméro de notice : 25946 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Spécialité : Surfaces et interfaces continentales, Hydrologie Agrosystèmes, écosystèmes et environnement : Toulouse : 2019 DOI : sans En ligne : http://www.theses.fr/2019ESAE0030 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96343 Impact of signal contamination on the adaptive detection performance of local hyperspectral anomalies / Stefania Matteoli in IEEE Transactions on geoscience and remote sensing, vol 52 n° 4 (April 2014)
![]()
[article]
Titre : Impact of signal contamination on the adaptive detection performance of local hyperspectral anomalies Type de document : Article/Communication Auteurs : Stefania Matteoli, Auteur ; Marco Diani, Auteur ; Giovanni Corsini, Auteur Année de publication : 2014 Article en page(s) : pp 1948 - 1968 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] contamination
[Termes descripteurs IGN] covariance
[Termes descripteurs IGN] dégradation du signal
[Termes descripteurs IGN] détection d'anomalie
[Termes descripteurs IGN] filtrage du bruit
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] rapport signal sur bruit
[Termes descripteurs IGN] signature spectrale
[Termes descripteurs IGN] variabilitéRésumé : (Auteur) The effects of signal contamination of secondary data are investigated in the framework of adaptive target detection in remotely sensed hyperspectral images. In contrast to previous studies on signal contamination, the focus of this paper is the detection of targets with unknown spectral signatures (i.e., anomalies) and adaptive detection methods based on a local estimation of the background covariance matrix. Contamination due to the target signal is expected to have a more severe impact when the number of secondary data is limited. An analytical model for signal contamination is developed that allows variability in the extent of contamination. Several parameters, such as the contamination fraction of secondary data and the contaminating signal energy, are introduced, and a contaminating signal-to-interference-plus-noise ratio is derived as an objective measure of contamination. The proposed model is employed to experimentally evaluate signal contamination effects and the impact of its variability on the performance of adaptive detection of local anomalies. The outcomes of the experimental study are substantiated by validation with real hyperspectral data. The results obtained highlight the relevance that the impact of signal contamination, assessed with respect to different system parameters, may have for practical applications. This paper represents a starting point for the development of detection performance forecasting models that consider signal contamination. Numéro de notice : A2014-266 Affiliation des auteurs : non IGN Thématique : IMAGERIE/POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2013.2256915 En ligne : https://doi.org/10.1109/TGRS.2013.2256915 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=33169
in IEEE Transactions on geoscience and remote sensing > vol 52 n° 4 (April 2014) . - pp 1948 - 1968[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 065-2014041 RAB Revue Centre de documentation En réserve 3L Disponible A GIS-based approach in support of an assessment of food safety risks / L. Beni in Transactions in GIS, vol 15 n° 3 (July 2011)
[article]
Titre : A GIS-based approach in support of an assessment of food safety risks Type de document : Article/Communication Auteurs : L. Beni, Auteur ; D. Leblanc, Auteur ; S. Villeneuve, Auteur ; P. Delaquis, Auteur Année de publication : 2011 Article en page(s) : pp 95 - 108 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications SIG
[Termes descripteurs IGN] alimentation
[Termes descripteurs IGN] analyse multicritère
[Termes descripteurs IGN] ArcGIS
[Termes descripteurs IGN] contamination
[Termes descripteurs IGN] risque sanitaire
[Termes descripteurs IGN] vulnérabilitéRésumé : (Auteur) A Geographical Information System (GIS)-based approach was developed for the identification of vulnerabilities and the measurement of risks associated with contamination of food systems with biological agents. In this research work, a tight integration of ArcGIS with the Arena simulation tool has been implemented. Arena was used to simulate and track contamination in a food distribution network and transmit the time dependent information to GIS. ArcGIS was employed to provide the primary user interface, process network data, and visualize the results. In addition, the GIS, through its powerful capabilities to process spatial data, could allow decision-makers to quickly determine the potential impact of a contamination event, at any stage, as a function of both time and geography. Two contamination scenarios along the farm-to-fork chain were examined to show the geographic zone and the proportion of the population affected by the contamination. A constraint Voronoi data structure was developed to define influence zones (these were color coded according to a dynamic risk index), to identify those areas that are at greatest immediate risk as time progresses, and to estimate the population affected by these contamination events. This approach thus appears to have general application to many GIS-based risk assessment problems. Numéro de notice : A2011-252 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=31030
in Transactions in GIS > vol 15 n° 3 (July 2011) . - pp 95 - 108[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 040-2011031 SL Revue Centre de documentation Revues en salle Disponible Optimization of mobile radioactivity monitoring networks / Gerard B.M. Heuvelink in International journal of geographical information science IJGIS, vol 24 n°3-4 (march 2010)
PermalinkGIS, multi-criteria and multi-factor spatial analysis for the probability assessment of the existence of illegal landfills / G. Biotto in International journal of geographical information science IJGIS, vol 23 n°9-10 (september 2009)
PermalinkSensitivity analysis of spatial models / L. Lilburne in International journal of geographical information science IJGIS, vol 23 n° 1-2 (january 2009)
PermalinkPatterns in soil quality: Natural geochemical variability versus anthropogenic impact in soils of Zeeland, The Netherlands / P.F.M. Van Gaans in International journal of geographical information science IJGIS, vol 21 n° 5 (may 2007)
PermalinkPermalinkClassification of contamination in salt marsh plant using hyperspectral reflectance / M.D. Wilson in IEEE Transactions on geoscience and remote sensing, vol 42 n° 5 (May 2004)
PermalinkAIS radiometry and the problem of contamination from mixed spectral orders / J.E. Conel in Remote sensing of environment, vol 24 n° 1 (February 1988)
Permalink