Descripteur
Termes descripteurs IGN > 1- Candidats > corrélation d'images > corrélation à l'aide de traits caractéristiques
corrélation à l'aide de traits caractéristiques |



Etendre la recherche sur niveau(x) vers le bas
Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation / R. Yazdan in ISPRS Journal of photogrammetry and remote sensing, vol 171 (January 2021)
![]()
[article]
Titre : Improving traffic sign recognition results in urban areas by overcoming the impact of scale and rotation Type de document : Article/Communication Auteurs : R. Yazdan, Auteur ; M. Varshosaz, Auteur Année de publication : 2021 Article en page(s) : pp 18 - 35 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] base de données d'images
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] corrélation croisée normalisée
[Termes descripteurs IGN] couple stéréoscopique
[Termes descripteurs IGN] détection automatique
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] segmentation d'image
[Termes descripteurs IGN] SIFT (algorithme)
[Termes descripteurs IGN] signalisation routière
[Termes descripteurs IGN] SURF (algorithme)
[Termes descripteurs IGN] Téhéran
[Termes descripteurs IGN] transformation de Hough
[Termes descripteurs IGN] zone urbaineRésumé : (auteur) Automatic detection and recognition of traffic signs have many applications. However, some problems can affect the accuracy of the existing algorithms, such as changes in environmental light conditions, shadows, the presence of objects of the same colour, significant changes in scale and rotation, as well as obstacles in front of the traffic signs. To overcome these difficulties, a reference image database is usually used that includes different modes of appearing the traffic signs in the images. In order to overcome the effects of scale and rotation, in this paper a new method is presented in which only one reference image is needed for each sign to recognise the traffic sign in an image. In the proposed method, imaging is done in stereo. Using the captured image pair, a virtual image is generated which is then used to recognise the sign. As a result, the recognition is carried out with a minimum number of reference images. Experiments show that the proposed algorithm significantly improves recognition results. The traffic signs are recognised with 93.1% accuracy that enjoys a 4.9% improvement over traditional methods. Numéro de notice : A2021-010 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.003 date de publication en ligne : 06/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.003 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96304
in ISPRS Journal of photogrammetry and remote sensing > vol 171 (January 2021) . - pp 18 - 35[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2021011 SL Revue Centre de documentation Revues en salle Disponible 081-2021013 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2021012 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt A LiDAR aiding ambiguity resolution method using fuzzy one-to-many feature matching / Chuang Qian in Journal of geodesy, vol 94 n° 10 (October 2020)
![]()
[article]
Titre : A LiDAR aiding ambiguity resolution method using fuzzy one-to-many feature matching Type de document : Article/Communication Auteurs : Chuang Qian, Auteur ; Hongjuan Zhang, Auteur ; Wenzhuo Li, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 18 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] estimation de position
[Termes descripteurs IGN] GPS assisté pour la navigation (technologies)
[Termes descripteurs IGN] logique floue
[Termes descripteurs IGN] positionnement cinématique en temps réel
[Termes descripteurs IGN] précision du positionnement
[Termes descripteurs IGN] résolution d'ambiguïtéRésumé : (auteur) Despite the high-precision performance of GNSS real-time kinematic (RTK) in many cases, large noises in pseudo-range measurements or harsh signal environments still impact float ambiguity estimation in kinematic localization, which leads to ambiguity-fixed failure and worse positioning results. To improve RTK ambiguity resolution (AR) performance further, multi-sensor fusion technique is a feasible option. Light detection and ranging (LiDAR)-based localization is a good complementary method to GNSS. Tight integration of GNSS RTK and LiDAR adds new information to satellite measurements, thus improving float ambiguity estimation and then improving integer AR. In this work, a LiDAR aiding single-frequency single-epoch GPS + BDS RTK was proposed and investigated by theoretical analysis and performance assessment. Considering LiDAR-based localization failure because of ambiguous and repetitive landmarks, a fuzzy one-to-many feature-matching method was proposed to find a series of sequences including all possible relative positions to landmarks. Then, the standard RTK method was tightly combined with the possible positions from each sequence to find the most accurate position estimation. Experimental results proved the superiority of our method over the standard RTK method in all aspects of success rate, fixed rate and positioning accuracy. In specific, our method achieved centimeter-level position accuracy with 100% fixed rate in the urban environment, while the standard GPS + BDS RTK obtained decimeter-level accuracy with 26.84% fixed rate. In the high occlusion environment, our method had centimeter-level accuracy with a fixed rate of 96.31%, comparing a meter-level accuracy and a fixed rate of 7.65% of standard GPS + BDS RTK method. Numéro de notice : A2020-649 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1007/s00190-020-01426-z date de publication en ligne : 25/11/2020 En ligne : https://doi.org/10.1007/s00190-020-01426-z Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96082
in Journal of geodesy > vol 94 n° 10 (October 2020) . - 18 p.[article]BIM-Tracker: A model-based visual tracking approach for indoor localisation using a 3D building model / Debaditya Acharya in ISPRS Journal of photogrammetry and remote sensing, vol 150 (April 2019)
![]()
[article]
Titre : BIM-Tracker: A model-based visual tracking approach for indoor localisation using a 3D building model Type de document : Article/Communication Auteurs : Debaditya Acharya, Auteur ; Milad Ramezani, Auteur ; Kourosh Khoshelham, Auteur ; Stephan Winter, Auteur Année de publication : 2019 Article en page(s) : pp 157 - 171 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications photogrammétriques
[Termes descripteurs IGN] algorithme de Gauss-Newton
[Termes descripteurs IGN] appariement de données localisées
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] estimation de pose
[Termes descripteurs IGN] filtre de Kalman
[Termes descripteurs IGN] longueur focale
[Termes descripteurs IGN] Matlab
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] modèle 3D du site
[Termes descripteurs IGN] positionnement en intérieur
[Termes descripteurs IGN] trajectoireRésumé : (Auteur) This article presents an accurate and robust visual indoor localisation approach that not only is infrastructure-free, but also avoids accumulation error by taking advantage of (1) the widespread ubiquity of mobile devices with cameras and (2) the availability of 3D building models for most modern buildings. Localisation is performed by matching image sequences captured by a camera, with a 3D model of the building in a model-based visual tracking framework. Comprehensive evaluation of the approach with a photo-realistic synthetic dataset shows the robustness of the localisation approach under challenging conditions. Additionally, the approach is tested and evaluated on real data captured by a smartphone. The results of the experiments indicate that a localisation accuracy better than 10 cm can be achieved by using this approach. Since localisation errors do not accumulate the proposed approach is suitable for indoor localisation tasks for long periods of time and augmented reality applications, without requiring any local infrastructure. A MATLAB implementation can be found on https://github.com/debaditya-unimelb/BIM-Tracker. Numéro de notice : A2019-139 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.02.014 date de publication en ligne : 27/02/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.02.014 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92473
in ISPRS Journal of photogrammetry and remote sensing > vol 150 (April 2019) . - pp 157 - 171[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019041 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019043 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019042 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt An effective ensemble classification framework using random forests and a correlation based feature selection technique / Dibyajyoti Chutia in Transactions in GIS, vol 21 n° 6 (December 2017)
![]()
[article]
Titre : An effective ensemble classification framework using random forests and a correlation based feature selection technique Type de document : Article/Communication Auteurs : Dibyajyoti Chutia, Auteur ; Dhruba Kumar Bhattacharyya, Auteur ; Jaganath Sarma, Auteur ; Penumetcha Narasa Lakshmi Raju, Auteur Année de publication : 2017 Article en page(s) : pp 1165 - 1178 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] image Landsat-ETM+
[Termes descripteurs IGN] image QuickbirdRésumé : (auteur) Accurate classification of heterogeneous land surfaces with homogeneous land cover classes is a challenging task as satellite images are characterized by a large number of features in the spectral and spatial domains. The identifying relevance of a feature or feature set is an important task for designing an effective classification scheme. Here, an ensemble of random forests (RF) classifiers is realized on the basis of relevance of features. Correlation‐based Feature Selection (CFS) was utilized to assess the relevance of a subset of features by studying the individual predictive ability of each feature along with the degree of redundancy between them. Predictability of RF was greatly improved by random selection of the relevant features in each of the splits. An investigation was carried out on different types of images from the Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) and QuickBird sensors. It has been observed that the performance of the RF classifier was significantly improved while using the optimal set of relevant features compared with a few of the most advanced supervised classifiers such as maximum likelihood classifier (MLC), Navie Bayes, multi‐layer perception (MLP), support vector machine (SVM) and bagging. Numéro de notice : A2017-836 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12268 date de publication en ligne : 27/04/2017 En ligne : https://doi.org/10.1111/tgis.12268 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=89362
in Transactions in GIS > vol 21 n° 6 (December 2017) . - pp 1165 - 1178[article]Accurate affine invariant image matching using oriented least square / Amin Sedaghat in Photogrammetric Engineering & Remote Sensing, PERS, vol 81 n° 9 (September 2015)
[article]
Titre : Accurate affine invariant image matching using oriented least square Type de document : Article/Communication Auteurs : Amin Sedaghat, Auteur ; Hamid Ebadi, Auteur Année de publication : 2015 Article en page(s) : pp 733 - 793 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] appariement automatique
[Termes descripteurs IGN] appariement d'images
[Termes descripteurs IGN] corrélation à l'aide de traits caractéristiques
[Termes descripteurs IGN] correlation par moindres carrés
[Termes descripteurs IGN] détection de coins Harris
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] MSER (algorithme)Résumé : (auteur) Image matching is a vital process for many photogrammetric and remote sensing applications such as image registration and aerial triangulation. In this paper, an accurate affine invariant image matching approach is presented. The proposed approach consists of three main steps. In the first step, two affine invariant feature detectors, including MSER and Harris-Affine features are applied for feature extraction. In the second step, initial corresponding features are selected using Euclidean distance between feature descriptors, followed by a consistency check process. Finally to overcome low positional accuracy of the local affine feature, an advanced version of the least square matching (LSM) namely, Oriented Least Square Matching (OLSM) is developed. Wellknown LSM method has been widely accepted as one of the most accurate methods to obtain high reliable corresponding points from a stereo image pair. However, it is sensitive to significant geometric distortion and requires very good initial approximation. In the proposed OLSM method, shape and size of the matching window are appropriately approximated using obtained affine shape information of the initial elliptical feature pairs. The proposed method was successfully applied for matching various synthetic and real close range and satellite images. Results demonstrate its accuracy and capability compared to standard LSM method Numéro de notice : A2015-986 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=80267
in Photogrammetric Engineering & Remote Sensing, PERS > vol 81 n° 9 (September 2015) . - pp 733 - 793[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 105-2015092 RAB Revue Centre de documentation En réserve 3L Disponible 105-2015091 RAB Revue Centre de documentation En réserve 3L Disponible Graph-based synchronous collaborative mapping / Xiaochen Kang in Geocarto international, vol 30 n° 1 - 2 (January - February 2015)
PermalinkUne méthode de construction de données spatio-temporelles pour l'étude de l'espace urbain ancien / Bertrand Duménieu (2013)
![]()
PermalinkPermalinkAnalyse et développement d’outils permettant de quantifier les problèmes de continuité au niveau des raccords dans une mosaïque d’ortho-images / M. Jaussaud (2010)
PermalinkA formulation for unsupervised hierarchical segmentation of facade images with periodic models / Jean-Pascal Burochin (2010)
PermalinkPermalinkA stereo matching algorithm for urban digital elevation models / Olivier Dissard in Photogrammetric Engineering & Remote Sensing, PERS, vol 66 n° 9 (September 2000)
PermalinkUsing stereo matching and perceptual grouping to detect buildings in aerial images / Tuan Dang (1994)
![]()
Permalink