Descripteur



Etendre la recherche sur niveau(x) vers le bas
Security risk management for the Internet of things: Technologies and techniques for IoT security, privacy and data protection / John Soldatos (2020)
![]()
Titre : Security risk management for the Internet of things: Technologies and techniques for IoT security, privacy and data protection Type de document : Monographie Auteurs : John Soldatos, Editeur scientifique Editeur : Boston, Delft : Now publishers Année de publication : 2020 Importance : 250 p. Format : 16 x 24 cm ISBN/ISSN/EAN : 978-1-68083-682-0 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Société de l'information
[Termes descripteurs IGN] attaque informatique
[Termes descripteurs IGN] cyberinfrastructure
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] données numériques
[Termes descripteurs IGN] internet des objets
[Termes descripteurs IGN] sécurité informatiqueRésumé : (éditeur) In recent years, the rising complexity of Internet of Things (IoT) systems has increased their potential vulnerabilities and introduced new cybersecurity challenges. In this context, state of the art methods and technologies for security risk assessment have prominent limitations when it comes to large scale, cyber-physical and interconnected IoT systems. Risk assessments for modern IoT systems must be frequent, dynamic and driven by knowledge about both cyber and physical assets. Furthermore, they should be more proactive, more automated, and able to leverage information shared across IoT value chains. This book introduces a set of novel risk assessment techniques and their role in the IoT Security risk management process. Specifically, it presents architectures and platforms for end-to-end security, including their implementation based on the edge/fog computing paradigm. It also highlights machine learning techniques that boost the automation and proactiveness of IoT security risk assessments. Furthermore, blockchain solutions for open and transparent sharing of IoT security information across the supply chain are introduced. Frameworks for privacy awareness, along with technical measures that enable privacy risk assessment and boost GDPR compliance are also presented. Likewise, the book illustrates novel solutions for security certification of IoT systems, along with techniques for IoT security interoperability. In the coming years, IoT security will be a challenging, yet very exciting journey for IoT stakeholders, including security experts, consultants, security research organizations and IoT solution providers. The book provides knowledge and insights about where we stand on this journey. It also attempts to develop a vision for the future and to help readers start their IoT Security efforts on the right foot. Note de contenu : 1- Introduction
2- Security Data Modelling for Configurable Risk Assessment as a Service in IoT Systems
3- Data-driven IoT Security Using Deep Learning Techniques
4- Privacy Awareness, Risk Assessment, and Control Measures in IoT Platforms: BRAIN-IoT Approach
5- IoT Network Risk Assessment and Mitigation: The SerIoT Approach
6- Chariot-integrated Approach to Safety, Privacy, and Security – CHARIOT IPSE
7- Pattern-driven Security, Privacy, Dependability and Interoperability in IoT
8- Enabling Continuous Privacy Risk Management in IoT Systems
9- Data Protection Compliance Requirements for the Internet of Things
10- Cybersecurity Certification in IoT Environments
11- Firmware Software Analysis at Source Code and Binary Levels
12- End-to-End Security for IoT
13- Blockchain Ledger Solution Affirming Physical, Operational, and Functional Changes in an IoT System
14- Leveraging Interledger Technologies in IoT Security Risk ManagementNuméro de notice : 25979 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/SOCIETE NUMERIQUE Nature : Monographie DOI : 10.1561/9781680836837 En ligne : http://dx.doi.org/10.1561/9781680836837 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96707
Titre : Artificial intelligence and the Internet of things Type de document : Monographie Auteurs : Mercedes Bunz, Auteur ; Laima Janciute, Auteur Editeur : Londres [Royaume-Uni] : University of Westminster Press Année de publication : 2018 Collection : CAMRI Policy Briefs num. 2 Importance : 31 p. ISBN/ISSN/EAN : 978-1-911534-82-2 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Intelligence artificielle
[Termes descripteurs IGN] aide à la décision
[Termes descripteurs IGN] cyberinfrastructure
[Termes descripteurs IGN] éthique
[Termes descripteurs IGN] Infrastructure de données
[Termes descripteurs IGN] internet des objets
[Termes descripteurs IGN] politique publique
[Termes descripteurs IGN] traitement automatique de données
[Termes descripteurs IGN] traitement du langage naturelRésumé : (éditeur) "Through algorithms and artificial intelligence (AI), objects and digital services now demonstrate new skills they did not have before, right up to replacing human activity through pre-programming or by making their own decisions. As part of the internet of things, AI applications are already widely used today, for example in language processing, image recognition and the tracking and processing of data. This policy brief illustrates the potential negative and positive impacts of AI and reviews related policy strategies adopted by the UK, US, EU, as well as Canada and China. Based on an ethical approach that considers the role of AI from a democratic perspective and considering the public interest, the authors make policy recommendations that help to strengthen the positive impact of AI and to mitigate its negative consequences." Note de contenu : 1- What's the issue?
2- Research evidence
3- Review of policy options
4- Policy recommandationsNuméro de notice : 25993 Affiliation des auteurs : non IGN Thématique : INFORMATIQUE/SOCIETE NUMERIQUE Nature : Monographie DOI : 10.16997/book25 En ligne : https://www.uwestminsterpress.co.uk/site/books/m/10.16997/book25 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96769 PolarGlobe : A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data / Wenwen Li in International journal of geographical information science IJGIS, vol 31 n° 7-8 (July - August 2017)
![]()
[article]
Titre : PolarGlobe : A web-wide virtual globe system for visualizing multidimensional, time-varying, big climate data Type de document : Article/Communication Auteurs : Wenwen Li, Auteur ; Sizhe Wang, Auteur Année de publication : 2017 Article en page(s) : pp 1562 - 1582 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] Arctique
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] cyberinfrastructure
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] données multidimensionnelles
[Termes descripteurs IGN] expérience scientifique
[Termes descripteurs IGN] géovisualisation
[Termes descripteurs IGN] globe virtuel
[Termes descripteurs IGN] image multitemporelle
[Termes descripteurs IGN] prototype
[Termes descripteurs IGN] rendu (géovisualisation)
[Termes descripteurs IGN] webGL
[Vedettes matières IGN] GéovisualisationRésumé : (Auteur) The increasing research interest in global climate change and the rise of the public awareness have generated a significant demand for new tools to support effective visualization of big climate data in a cyber environment such that anyone from any location with an Internet connection and a web browser can easily view and comprehend the data. In response to the demand, this paper introduces a new web-based platform for visualizing multidimensional, time-varying climate data on a virtual globe. The web-based platform is built upon a virtual globe system Cesium, which is open-source, highly extendable and capable of being easily integrated into a web environment. The emerging WebGL technique is adapted to support interactive rendering of 3D graphics with hardware graphics acceleration. To address the challenges of transmitting and visualizing voluminous, complex climate data over the Internet to support real-time visualization, we develop a stream encoding and transmission strategy based on video-compression techniques. This strategy allows dynamic provision of scientific data in different precisions to balance the needs for scientific analysis and visualization cost. Approaches to represent, encode and decode processed data are also introduced in detail to show the operational workflow. Finally, we conduct several experiments to demonstrate the performance of the proposed strategy under different network conditions. A prototype, PolarGlobe, has been developed to visualize climate data in the Arctic regions from multiple angles. Numéro de notice : A2017-312 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2017.1306863 En ligne : http://dx.doi.org/10.1080/13658816.2017.1306863 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=85366
in International journal of geographical information science IJGIS > vol 31 n° 7-8 (July - August 2017) . - pp 1562 - 1582[article]Réservation
Réserver ce documentExemplaires (2)
Code-barres Cote Support Localisation Section Disponibilité 079-2017041 RAB Revue Centre de documentation En réserve 3L Disponible 079-2017042 RAB Revue Centre de documentation Revues en salle Disponible A land use/land cover change geospatial cyberinfrastructure to integrate big data and temporal topology / Jin Xing in International journal of geographical information science IJGIS, vol 30 n° 3-4 (March - April 2016)
![]()
[article]
Titre : A land use/land cover change geospatial cyberinfrastructure to integrate big data and temporal topology Type de document : Article/Communication Auteurs : Jin Xing, Auteur ; Renee E. Sieber, Auteur Année de publication : 2016 Article en page(s) : pp 573 - 593 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] changement d'occupation du sol
[Termes descripteurs IGN] cyberinfrastructure
[Termes descripteurs IGN] dimension temporelle
[Termes descripteurs IGN] données maillées
[Termes descripteurs IGN] données massives
[Termes descripteurs IGN] données spatiotemporelles
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] relation topologique
[Termes descripteurs IGN] segmentation d'imageRésumé : (Auteur) Big data have shifted spatial optimization from a purely computational-intensive problem to a data-intensive challenge. This is especially the case for spatiotemporal (ST) land use/land cover change (LUCC) research. In addition to greater variety, for example, from sensing platforms, big data offer datasets at higher spatial and temporal resolutions; these new offerings require new methods to optimize data handling and analysis. We propose a LUCC-based geospatial cyberinfrastructure (GCI) that optimizes big data handling and analysis, in this case with raster data. The GCI provides three levels of optimization. First, we employ spatial optimization with graph-based image segmentation. Second, we propose ST Atom Model to temporally optimize the image segments for LUCC. At last, the first two domain ST optimizations are supported by the computational optimization for big data analysis. The evaluation is conducted using DMTI (DMTI Spatial Inc.) Satellite StreetView imagery datasets acquired for the Greater Montreal area, Canada in 2006, 2009, and 2012 (534 GB, 60 cm spatial resolution, RGB image). Our LUCC-based GCI builds an optimization bridge among LUCC, ST modelling, and big data. Numéro de notice : A2016-204 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1104534 En ligne : https://doi.org/10.1080/13658816.2015.1104534 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79891
in International journal of geographical information science IJGIS > vol 30 n° 3-4 (March - April 2016) . - pp 573 - 593[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016021 RAB Revue Centre de documentation En réserve 3L Disponible A parallel algorithm for coverage optimization on multi-core architectures / Ran Wei in International journal of geographical information science IJGIS, vol 30 n° 3-4 (March - April 2016)
![]()
[article]
Titre : A parallel algorithm for coverage optimization on multi-core architectures Type de document : Article/Communication Auteurs : Ran Wei, Auteur ; Alan T. Murray, Auteur Année de publication : 2016 Article en page(s) : pp 432 - 450 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] architecture de système
[Termes descripteurs IGN] Californie (Etats-Unis)
[Termes descripteurs IGN] couverture (données géographiques)
[Termes descripteurs IGN] cyberinfrastructure
[Termes descripteurs IGN] Ohio (Etats-Unis)
[Termes descripteurs IGN] optimisation spatiale
[Termes descripteurs IGN] système d'information géographique
[Termes descripteurs IGN] traitement parallèle
[Termes descripteurs IGN] urgenceRésumé : (Auteur) Location siting is an important part of service provision, with much potential to impact operational efficiency, safety, security, system reliability, etc. A class of location models seeks to optimize coverage of demand for service that is continuously distributed across space. Decision-making and planning contexts include police/fire resource allocation for a community, siting cellular towers to support cell phone signal transmission, locating emergency warning sirens to alert the public of severe weather and other related dangers, and many others as well. When facilities can be sited anywhere in continuous space to provide coverage to an entire region, this is a very computationally challenging problem to solve because potential demand for service is everywhere and there are an infinite number of potential facility sites to consider. This article develops a new parallel solution approach for this location coverage optimization problem through an iterative bounding scheme on multi-core architectures. The developed approach is applied to site emergency warning sirens in Dublin, Ohio, and fire stations in Elk Grove, California. Results demonstrate the effectiveness and efficiency of the proposed approach, enabling real-time analysis and planning. This work illustrates that the integration of cyberinfrastructure can significantly improve computational efficiency in solving challenging spatial optimization problems, fitting the themes of this special issue: cyberinfrastructure, GIS, and spatial optimization. Numéro de notice : A2016-202 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2015.1030750 En ligne : https://doi.org/10.1080/13658816.2015.1030750 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=79888
in International journal of geographical information science IJGIS > vol 30 n° 3-4 (March - April 2016) . - pp 432 - 450[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 079-2016021 RAB Revue Centre de documentation En réserve 3L Disponible Geoscience data provenance : An overview / Liping Di in IEEE Transactions on geoscience and remote sensing, vol 51 n° 11 (November 2013)
PermalinkTeraGrid GIScience Gateway: Bridging cyberinfrastructure and GIScience / Shuo Wang in International journal of geographical information science IJGIS, vol 23 n° 5 (may 2009)
Permalink