Descripteur



Etendre la recherche sur niveau(x) vers le bas
Classification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network / Yueguan Yan in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)
![]()
[article]
Titre : Classification and segmentation of mining area objects in large-scale spares Lidar point cloud using a novel rotated density network Type de document : Article/Communication Auteurs : Yueguan Yan, Auteur ; Haixu Yan, Auteur ; Junting Guo, Auteur ; Huayang Dai, Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] corrélation automatique de points homologues
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] objet 3D
[Termes descripteurs IGN] reconnaissance d'objets
[Termes descripteurs IGN] semis de points clairsemésRésumé : (auteur) The classification and segmentation of large-scale, sparse, LiDAR point cloud with deep learning are widely used in engineering survey and geoscience. The loose structure and the non-uniform point density are the two major constraints to utilize the sparse point cloud. This paper proposes a lightweight auxiliary network, called the rotated density-based network (RD-Net), and a novel point cloud preprocessing method, Grid Trajectory Box (GT-Box), to solve these problems. The combination of RD-Net and PointNet was used to achieve high-precision 3D classification and segmentation of the sparse point cloud. It emphasizes the importance of the density feature of LiDAR points for 3D object recognition of sparse point cloud. Furthermore, RD-Net plus PointCNN, PointNet, PointCNN, and RD-Net were introduced as comparisons. Public datasets were used to evaluate the performance of the proposed method. The results showed that the RD-Net could significantly improve the performance of sparse point cloud recognition for the coordinate-based network and could improve the classification accuracy to 94% and the segmentation per-accuracy to 70%. Additionally, the results concluded that point-density information has an independent spatial–local correlation and plays an essential role in the process of sparse point cloud recognition. Numéro de notice : A2020-256 Affiliation des auteurs : non IGN Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 0.3390/ijgi9030182 date de publication en ligne : 24/03/2020 En ligne : https://doi.org/10.3390/ijgi9030182 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95012
in ISPRS International journal of geo-information > vol 9 n° 3 (March 2020) . - 19 p.[article]PpC: a new method to reduce the density of lidar data. Does it affect the DEM accuracy? / Sandra Bujan in Photogrammetric record, vol 34 n° 167 (September 2019)
![]()
[article]
Titre : PpC: a new method to reduce the density of lidar data. Does it affect the DEM accuracy? Type de document : Article/Communication Auteurs : Sandra Bujan, Auteur ; Edouardo M. González‐Ferreiro, Auteur ; Miguel Cordero, Auteur ; David Miranda, Auteur Année de publication : 2019 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] pente
[Termes descripteurs IGN] précision
[Termes descripteurs IGN] R (langage)
[Termes descripteurs IGN] réductionRésumé : (auteur) In cost–benefit analysis of lidar data acquisition, point density is often artificially reduced in order to examine how this affects the quality of derived products. However, the performance of the different density reduction methods has not yet been compared and their influence on the accuracy of the models and results has not been evaluated. A novel method for reducing the point density, termed Proportional per Cell (PpC), is presented and compared with the performance of three other reduction methods, examining their influence on the accuracy of lidar‐derived digital surface models using ISPRS reference data. The results indicate that the PpC method was better at conserving the characteristics of the original data. However, point density, sample type and slope had a greater influence than the reduction method used. Numéro de notice : A2019-499 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/phor.12295 date de publication en ligne : 10/10/2019 En ligne : https://doi.org/10.1111/phor.12295 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93763
in Photogrammetric record > vol 34 n° 167 (September 2019) . - pp[article]Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density / Yuan Li in ISPRS Journal of photogrammetry and remote sensing, vol 153 (July 2019)
![]()
[article]
Titre : Structural segmentation and classification of mobile laser scanning point clouds with large variations in point density Type de document : Article/Communication Auteurs : Yuan Li, Auteur ; Bo Wu, Auteur ; Xuming Ge, Auteur Année de publication : 2019 Article en page(s) : pp 151 - 165 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] champ aléatoire conditionnel
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] classification basée sur les régions
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] Hong-Kong
[Termes descripteurs IGN] modèle 3D de l'espace urbain
[Termes descripteurs IGN] Paris (75)
[Termes descripteurs IGN] scène urbaine
[Termes descripteurs IGN] segmentation en régions
[Termes descripteurs IGN] segmentation hiérarchique
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) Objects are formed by various structures and such structural information is essential for the identification of objects, especially for street facilities presented by mobile laser scanning (MLS) data with abundant details. However, due to the large volume of data, large variations in point density, noise and complexity of scanned scenes, the achievement of effective decomposition of objects into physical meaningful structures remains a challenge issue. And structural information has been rarely considered to improve the accuracy of distinguishing between objects with global or local similarity, such as traffic signs and traffic lights. Therefore, we propose a structural segmentation and classification method for MLS point clouds that is efficient and robust to variations in point density and complex urban scenes. During the segmentation stage, a novel region growing approach and a multi-size supervoxel segmentation algorithm robust to noise and varying density are combined to extract effective local shape descriptors. Structural components with physically meaningful labels are generated via structural labelling and clustering. During the classification stage, we consider the structural information at various scales and locations and encode it into a conditional random-field model for unary and pairwise inferences. High-order potentials are also introduced into the conditional random field to eliminate regional label noise. These high-order potentials are defined upon regions independent of connection relationships and can therefore take effect on isolated nodes. Experiments with two MLS datasets of typical urban scenes in Paris and Hong Kong were used to evaluate the performance of the proposed method. Nine and eleven different object classes were recognized from these two datasets with overall accuracies of 97.13% and 95.79%, respectively, indicating the effectiveness of the proposed method of interpreting complex urban scenes from point clouds with large variations in point density. Compared with previous studies on the Paris dataset, our method was able to recognize more classes and obtained a mean F1-score of 72.70% of seven common classes, being higher than the best of previous results. Numéro de notice : A2019-262 Affiliation des auteurs : non IGN Thématique : IMAGERIE/URBANISME Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.05.007 date de publication en ligne : 28/05/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.05.007 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=93075
in ISPRS Journal of photogrammetry and remote sensing > vol 153 (July 2019) . - pp 151 - 165[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019071 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019073 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019072 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data / Piotr Tompalski in Remote sensing of environment, vol 227 (15 June 2019)
![]()
[article]
Titre : Demonstrating the transferability of forest inventory attribute models derived using airborne laser scanning data Type de document : Article/Communication Auteurs : Piotr Tompalski, Auteur ; Joanne C. White, Auteur ; Nicholas C. Coops, Auteur ; Michael A. Wulder, Auteur Année de publication : 2019 Article en page(s) : pp 110 - 124 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] méthode des moindres carrés
[Termes descripteurs IGN] méthode robuste
[Termes descripteurs IGN] modèle mathématique
[Termes descripteurs IGN] régression
[Vedettes matières IGN] Inventaire forestierRésumé : (auteur) Airborne laser scanning (ALS) is a reliable source of accurate information for forest stand inventory attributes including height, cover, basal area, and volume. The commonly applied area-based approach (ABA) allows the derivation of wall-to-wall geospatial coverages representing each of the modeled attributes at a grid-cell level, with spatial resolutions typically between 20 and 30 m. The ABA predictive models are developed using stratified inventory data from field plots, the requirement for which can increase the overall cost of the ALS-based inventory. Parsimonious use of ground plots is a key means to control variable costs in the operational implementation of the ABA. In this paper, we demonstrate how the prediction accuracy of Lorey's height (HL, m), quadratic mean diameter (QMD, cm), and gross volume (V, m3) vary when existing ABA models are transferred to different areas or are applied to point cloud data with different characteristics than those on which the original model was developed. Specifically, we consider three scenarios of model transferability: (i) same point cloud characteristics, different areas; (ii) different point cloud characteristics, same areas; and (iii) different point cloud characteristics, different areas. We generated area-based models using three modeling approaches: linear regression (OLS), random forests (RF), and k-nearest neighbour (kNN) imputation. Results indicated that the prediction accuracy of area-based models varied by attribute and by modeling approach. We found that when the models were transferred their prediction accuracy decreased, with an average increase in relative bias up to 22.04%, and increase in relative RMSE up to 29.31%. Prediction accuracies for HL were higher than those of QMD or V when models were transferred, and had the lowest average increase in relative bias and relative RMSE of Numéro de notice : A2019-227 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.rse.2019.04.006 date de publication en ligne : 13/04/2019 En ligne : https://doi.org/10.1016/j.rse.2019.04.006 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92741
in Remote sensing of environment > vol 227 (15 June 2019) . - pp 110 - 124[article]A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation / Langning Huo in ISPRS Journal of photogrammetry and remote sensing, vol 151 (May 2019)
![]()
[article]
Titre : A new method of equiangular sectorial voxelization of single-scan terrestrial laser scanning data and its applications in forest defoliation estimation Type de document : Article/Communication Auteurs : Langning Huo, Auteur ; Xiaoli Zhang, Auteur Année de publication : 2019 Article en page(s) : pp 302 - 312 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] canopée
[Termes descripteurs IGN] défoliation
[Termes descripteurs IGN] densité des points
[Termes descripteurs IGN] régression linéaire
[Termes descripteurs IGN] télémétrie laser terrestre
[Termes descripteurs IGN] voxelRésumé : (Auteur) Voxelization is an efficient and frequently used data process that is applied to terrestrial laser scanning (TLS) data to facilitate data management and reduce storage size. In this study, an innovative method of equiangular sectorial voxelization is presented based on the distinctive point distribution characteristic of single-scan TLS. It has the function of containing the same number of laser beams going through each voxel, which results in metrics that can be applied to delineate forest conditions. To verify the effectiveness of the new voxelization method and to illustrate its application, 48 plots and 1098 individual trees with different degrees of defoliation were scanned using single-scan TLS. Their defoliation could be linearly regressed by using only point density metrics derived from this new shape of voxels. A 0.89 R2 value and a 12 RMSE (% of defoliation) were obtained for individual-tree-scale estimation, and a 0.83 R2 value and a 12 RMSE (% of defoliation) were obtained for plot-scale estimation. We conclude that the new voxelization method was effective, and the point density that was thus calculated was an efficient feature that revealed forest attributes. Numéro de notice : A2019-212 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2019.03.018 date de publication en ligne : 30/03/2019 En ligne : https://doi.org/10.1016/j.isprsjprs.2019.03.018 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=92678
in ISPRS Journal of photogrammetry and remote sensing > vol 151 (May 2019) . - pp 302 - 312[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2019051 RAB Revue Centre de documentation En réserve 3L Disponible 081-2019053 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2019052 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Diffusion and inpainting of reflectance and height LiDAR orthoimages / Pierre Biasutti in Computer Vision and image understanding, vol 179 (February 2019)
![]()
PermalinkRepeated structure detection for 3D reconstruction of building façade from mobile lidar data / Yanming Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 85 n° 2 (February 2019)
PermalinkPermalink3D local feature BKD to extract road information from mobile laser scanning point clouds / Yang Bisheng in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkJoint classification and contour extraction of large 3D point clouds / Timo Hackel in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkReducing classification error of grassland overgrowth by combing low-density lidar acquisitions and optical remote sensing data / Timo P Pitkänen in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
PermalinkVertical stratification of forest canopy for segmentation of understory trees within small-footprint airborne LiDAR point clouds / Hamid Hamraz in ISPRS Journal of photogrammetry and remote sensing, vol 130 (August 2017)
Permalink3D tree modeling from incomplete point clouds via optimization and L1-MST / Jie Mei in International journal of geographical information science IJGIS, vol 31 n° 5-6 (May-June 2017)
PermalinkPlanar-based adaptive down-sampling of point clouds / Yun-Jou Lin in Photogrammetric Engineering & Remote Sensing, PERS, vol 82 n° 12 (December 2016)
PermalinkEffects of forest structure and airborne laser scanning point cloud density on 3D delineation of individual tree crowns / Kaja Kandare in European journal of remote sensing, vol 49 (2016)
Permalink