Descripteur
Documents disponibles dans cette catégorie (139)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Automatic detection of thin oil films on water surfaces in ultraviolet imagery / Ming Xie in Photogrammetric record, vol 38 n° 181 (March 2023)
[article]
Titre : Automatic detection of thin oil films on water surfaces in ultraviolet imagery Type de document : Article/Communication Auteurs : Ming Xie, Auteur ; Xiurui Zhang, Auteur ; Ying Li, Auteur ; et al., Auteur Année de publication : 2023 Article en page(s) : pp 47 - 62 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes IGN] détection automatique
[Termes IGN] filtre optique
[Termes IGN] hydrocarbure
[Termes IGN] image AVIRIS
[Termes IGN] marée noire
[Termes IGN] niveau de gris (image)
[Termes IGN] rayonnement ultraviolet
[Termes IGN] segmentation d'image
[Termes IGN] seuillage binaire
[Termes IGN] surface de la merRésumé : (auteur) Among the various remote sensing technologies that have been applied to monitor oil spills on the sea surface, passive ultraviolet (UV) imaging is a controversial one that has raised some disputes in the community of oil spill remote sensing. As a result, the research and applications of oil spill detection using passive UV imaging have not been as developed as other methods. In order to clarify some existing questions on oil spill detection using passive UV remote sensing technology, this paper discusses the needs of thin oil film detection, examines the feasibility of thin oil film detection using passive UV imaging through field experiments under controlled conditions and validates it with the UV imagery derived from the airborne visible/infrared imaging spectrometer (AVIRIS) observation of the Deepwater Horizon oil spill. Two types of fully automatic models are designed to extract the thin oil films on the water surface: (1) a binary classification model based on an adaptive threshold; (2) an unsupervised image segmentation model based on image clustering and greyscale histogram analysis. The two models are tested on the UV imagery obtained through both field experiments and AVIRIS observations. The results indicate that the binary classification model can extract the thin oil films with reasonable accuracy under stable imaging conditions, while the unsupervised image clustering model can robustly detect the thin oil films at the cost of higher computational complexity. These results infer that passive UV imaging is an effective way to detect thin oil films and could be applied to provide early warning at the beginning stage of oil spills and reduce further damage. It may also be applied as a supplementary method for oil spill detection to achieve comprehensive oil spill monitoring. Numéro de notice : A2023-163 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1111/phor.12439 Date de publication en ligne : 09/02/2023 En ligne : https://doi.org/10.1111/phor.12439 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102866
in Photogrammetric record > vol 38 n° 181 (March 2023) . - pp 47 - 62[article]Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery / Yuxin Wang in Science of the total environment, vol 853 (December 2022)
[article]
Titre : Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery Type de document : Article/Communication Auteurs : Yuxin Wang, Auteur ; Xianqiang He, Auteur ; Yan Bai, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 158374 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] Chine
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] classification par nuées dynamiques
[Termes IGN] couleur de l'océan
[Termes IGN] détection automatique
[Termes IGN] eau usée
[Termes IGN] image Sentinel-MSI
[Termes IGN] littoral
[Termes IGN] perturbation écologique
[Termes IGN] qualité des eauxRésumé : (auteur) Terrestrial pollution has a great impact on the coastal ecological environment, and widely distributed coastal outfalls act as the final gate through which pollutants flow into rivers and oceans. Thus, effectively monitoring the water quality of coastal outfalls is the key to protecting the ecological environment. Satellite remote sensing provides an attractive way to monitor sewage discharge. Selecting the coastal areas of Zhejiang Province, China, as an example, this study proposes an innovative method for automatically detecting suspected sewage discharge from coastal outfalls based on high spatial resolution satellite imageries from Sentinel-2. According to the accumulated in situ observations, we established a training dataset of water spectra covering various optical water types from satellite-retrieved remote sensing reflectance (Rrs). Based on the clustering results from unsupervised classification and different spectral indices, a random forest (RF) classification model was established for the optical water type classification and detection of suspected sewage. The final classification covers 14 optical water types, with type 12 and type 14 corresponding to the high eutrophication water type and suspected sewage water type, respectively. The classification result of model training datasets exhibited high accuracy with only one misclassified sample. This model was evaluated by historical sewage discharge events that were verified by on-site observations and demonstrated that it could successfully recognize sewage discharge from coastal outfalls. In addition, this model has been operationally applied to automatically detect suspected sewage discharge in the coastal area of Zhejiang Province, China, and shows broad application value for coastal pollution supervision, management, and source analysis. Numéro de notice : A2022-859 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.scitotenv.2022.158374 Date de publication en ligne : 28/08/2022 En ligne : https://doi.org/10.1016/j.scitotenv.2022.158374 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102135
in Science of the total environment > vol 853 (December 2022) . - n° 158374[article]Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning / Aboubakar Sani-Mohammed in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 6 (December 2022)
[article]
Titre : Instance segmentation of standing dead trees in dense forest from aerial imagery using deep learning Type de document : Article/Communication Auteurs : Aboubakar Sani-Mohammed, Auteur ; Wei Yao, Auteur ; Marco Heurich, Auteur Année de publication : 2022 Article en page(s) : n° 100024 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] arbre mort
[Termes IGN] Bavière (Allemagne)
[Termes IGN] bois sur pied
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection automatique
[Termes IGN] gestion forestière durable
[Termes IGN] image à haute résolution
[Termes IGN] image aérienne
[Termes IGN] image infrarouge couleur
[Termes IGN] peuplement mélangé
[Termes IGN] puits de carbone
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Mapping standing dead trees, especially, in natural forests is very important for evaluation of the forest's health status, and its capability for storing Carbon, and the conservation of biodiversity. Apparently, natural forests have larger areas which renders the classical field surveying method very challenging, time-consuming, labor-intensive, and unsustainable. Thus, for effective forest management, there is the need for an automated approach that would be cost-effective. With the advent of Machine Learning, Deep Learning has proven to successfully achieve excellent results. This study presents an adjusted Mask R-CNN Deep Learning approach for detecting and segmenting standing dead trees in a mixed dense forest from CIR aerial imagery using a limited (195 images) training dataset. First, transfer learning is considered coupled with the image augmentation technique to leverage the limitation of training datasets. Then, we strategically selected hyperparameters to suit appropriately our model's architecture that fits well with our type of data (dead trees in images). Finally, to assess the generalization capability of our model's performance, a test dataset that was not confronted to the deep neural network was used for comprehensive evaluation. Our model recorded promising results reaching a mean average precision, average recall, and average F1-Score of 0.85, 0.88, and 0.87 respectively, despite our relatively low resolution (20 cm) dataset. Consequently, our model could be used for automation in standing dead tree detection and segmentation for enhanced forest management. This is equally significant for biodiversity conservation, and forest Carbon storage estimation. Numéro de notice : A2022-871 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.ophoto.2022.100024 Date de publication en ligne : 10/11/2022 En ligne : https://doi.org/10.1016/j.ophoto.2022.100024 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=102165
in ISPRS Open Journal of Photogrammetry and Remote Sensing > vol 6 (December 2022) . - n° 100024[article]Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR / Zhenyang Hui in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : Multi-level self-adaptive individual tree detection for coniferous forest using airborne LiDAR Type de document : Article/Communication Auteurs : Zhenyang Hui, Auteur ; Penggen Cheng, Auteur ; Bisheng Yang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103028 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] analyse de groupement
[Termes IGN] classification par nuées dynamiques
[Termes IGN] détection automatique
[Termes IGN] détection d'arbres
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] données matricielles
[Termes IGN] modèle numérique de surface de la canopée
[Termes IGN] optimisation (mathématiques)
[Termes IGN] Pinophyta
[Termes IGN] segmentation d'image
[Termes IGN] segmentation multi-échelle
[Termes IGN] semis de pointsRésumé : (auteur) To obtain satisfying results of individual tree detection from LiDAR points, parameters using traditional methods usually need to be adjusted by trials and errors. When encountering complex forest environments, the detection accuracy cannot be satisfied. To resolve this, a multi-level self-adaptive individual tree detection method was presented in this paper. The proposed method can be seen as a hybrid model, which combined the strength of both raster-based and point-based methods. Raster-based strategy was first used for achieving initial trees detection results, while the point-based strategy was adopted for optimizing the clustered trees. In the proposed method, crown width scales were estimated automatically. Meanwhile, multi-scales segmented results were fused together to take advantage of segmented results of both larger and small scales. Six different coniferous forests were adopted for testing. Experimental result shows that this study achieved the lowest omission and commission errors comparing with other three classical approaches. Meanwhile, the average F1 score in this paper is 0.84, which is much highest out of other methods. Numéro de notice : A2022-784 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103028 Date de publication en ligne : 24/09/2022 En ligne : https://doi.org/10.1016/j.jag.2022.103028 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101887
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103028[article]Automated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake events / Sergio Baselga in Survey review, vol 54 n° 386 (September 2022)
[article]
Titre : Automated detection of discontinuities in EUREF permanent GNSS network stations due to earthquake events Type de document : Article/Communication Auteurs : Sergio Baselga, Auteur ; Joanna Najder, Auteur Année de publication : 2022 Article en page(s) : pp 420 - 428 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Systèmes de référence et réseaux
[Termes IGN] déformation de la croute terrestre
[Termes IGN] détection automatique
[Termes IGN] réseau permanent EUREF
[Termes IGN] séisme
[Termes IGN] série temporelle
[Termes IGN] station GNSSRésumé : (auteur) The EUREF Permanent GNSS Network (EPN) provides the users with data and products such as station coordinate time series. These are subject to possible discontinuities and trend changes, being earthquake events one of the possible natural causes for these variations. We present here a fully automated tool for the analysis of the coordinate time series of EPN stations located in the desired neighbourhood of an earthquake epicentre. The tool is made freely available to the public and applied here to two significant earthquake events occurred in Europe in recent years, where several trend changes and jumps are revealed. Numéro de notice : A2022-659 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/00396265.2021.1964230 Date de publication en ligne : 01/09/2021 En ligne : https://doi.org/10.1080/00396265.2021.1964230 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101510
in Survey review > vol 54 n° 386 (September 2022) . - pp 420 - 428[article]Point-of-interest detection from Weibo data for map updating / Xue Yang in Transactions in GIS, vol 26 n° 6 (September 2022)PermalinkAn automatic approach for tree species detection and profile estimation of urban street trees using deep learning and Google street view images / Kwanghun Choi in ISPRS Journal of photogrammetry and remote sensing, vol 190 (August 2022)PermalinkChange detection in street environments based on mobile laser scanning: A fuzzy spatial reasoning approach / Joachim Gehrung in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkGenerating impact maps from bomb craters automatically detected in aerial wartime images using marked point processes / Christian Kruse in ISPRS Open Journal of Photogrammetry and Remote Sensing, vol 5 (August 2022)PermalinkResearch on automatic identification method of terraces on the Loess plateau based on deep transfer learning / Mingge Yu in Remote sensing, vol 14 n° 10 (May-2 2022)PermalinkAttributs de texture extraits d'images multispectrales acquises en conditions d'éclairage non contrôlées : application à l'agriculture de précision / Anis Amziane (2022)PermalinkA PCA-PD fusion method for change detection in remote sensing multi temporal images / Soltana Achour in Geocarto international, vol 37 n° 1 ([01/01/2022])PermalinkPermalinkAutomatic extraction of indoor spatial information from floor plan image: A patch-based deep learning methodology application on large-scale complex buildings / Hyunjung Kim in ISPRS International journal of geo-information, vol 10 n° 12 (December 2021)PermalinkDétection des forêts dégradées en Guinée à partir des images satellites Sentinel-2 : évaluation de l'apport potentiel des nouveaux capteurs satellitaires optiques et radars / An Vo Quang in Blog de la RFPT, sans n° ([11/10/2021])Permalink