Descripteur
Termes IGN > sciences naturelles > physique > traitement d'image > analyse d'image numérique > analyse d'image orientée objet > détection d'objet
détection d'objetVoir aussi |
Documents disponibles dans cette catégorie (194)



Etendre la recherche sur niveau(x) vers le bas
Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation / Huan Ning in International journal of geographical information science IJGIS, vol 36 n° 7 (juillet 2022)
![]()
[article]
Titre : Exploring the vertical dimension of street view image based on deep learning: a case study on lowest floor elevation estimation Type de document : Article/Communication Auteurs : Huan Ning, Auteur ; Zhenlong Li, Auteur ; Xinyue Ye, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1317 - 1342 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] distorsion d'image
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] hauteur du bâti
[Termes IGN] image Streetview
[Termes IGN] lever tachéométrique
[Termes IGN] modèle numérique de surface
[Termes IGN] porteRésumé : (auteur) Street view imagery such as Google Street View is widely used in people’s daily lives. Many studies have been conducted to detect and map objects such as traffic signs and sidewalks for urban built-up environment analysis. While mapping objects in the horizontal dimension is common in those studies, automatic vertical measuring in large areas is underexploited. Vertical information from street view imagery can benefit a variety of studies. One notable application is estimating the lowest floor elevation, which is critical for building flood vulnerability assessment and insurance premium calculation. In this article, we explored the vertical measurement in street view imagery using the principle of tacheometric surveying. In the case study of lowest floor elevation estimation using Google Street View images, we trained a neural network (YOLO-v5) for door detection and used the fixed height of doors to measure doors’ elevation. The results suggest that the average error of estimated elevation is 0.218 m. The depthmaps of Google Street View were utilized to traverse the elevation from the roadway surface to target objects. The proposed pipeline provides a novel approach for automatic elevation estimation from street view imagery and is expected to benefit future terrain-related studies for large areas. Numéro de notice : A2022-465 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1981334 Date de publication en ligne : 06/10/2021 En ligne : https://doi.org/10.1080/13658816.2021.1981334 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100970
in International journal of geographical information science IJGIS > vol 36 n° 7 (juillet 2022) . - pp 1317 - 1342[article]Street-view imagery guided street furniture inventory from mobile laser scanning point clouds / Yuzhou Zhou in ISPRS Journal of photogrammetry and remote sensing, vol 189 (July 2022)
![]()
[article]
Titre : Street-view imagery guided street furniture inventory from mobile laser scanning point clouds Type de document : Article/Communication Auteurs : Yuzhou Zhou, Auteur ; Xu Han, Auteur ; Mingjun Peng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] détection d'objet
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] image Streetview
[Termes IGN] instance
[Termes IGN] inventaire
[Termes IGN] jeu de données localisées
[Termes IGN] masque
[Termes IGN] mobilier urbain
[Termes IGN] segmentation sémantique
[Termes IGN] semis de points
[Termes IGN] séparateur à vaste marge
[Termes IGN] Shanghai (Chine)
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Outdated or sketchy inventory of street furniture may misguide the planners on the renovation and upgrade of transportation infrastructures, thus posing potential threats to traffic safety. Previous studies have taken their steps using point clouds or street-view imagery (SVI) for street furniture inventory, but there remains a gap to balance semantic richness, localization accuracy and working efficiency. Therefore, this paper proposes an effective pipeline that combines SVI and point clouds for the inventory of street furniture. The proposed pipeline encompasses three steps: (1) Off-the-shelf street furniture detection models are applied on SVI for generating two-dimensional (2D) proposals and then three-dimensional (3D) point cloud frustums are accordingly cropped; (2) The instance mask and the instance 3D bounding box are predicted for each frustum using a multi-task neural network; (3) Frustums from adjacent perspectives are associated and fused via multi-object tracking, after which the object-centric instance segmentation outputs the final street furniture with 3D locations and semantic labels. This pipeline was validated on datasets collected in Shanghai and Wuhan, producing component-level street furniture inventory of nine classes. The instance-level mean recall and precision reach 86.4%, 80.9% and 83.2%, 87.8% respectively in Shanghai and Wuhan, and the point-level mean recall, precision, weighted coverage all exceed 73.7%. Numéro de notice : A2022-403 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.isprsjprs.2022.04.023 Date de publication en ligne : 12/05/2022 En ligne : https://doi.org/10.1016/j.isprsjprs.2022.04.023 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100711
in ISPRS Journal of photogrammetry and remote sensing > vol 189 (July 2022) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 081-2022071 SL Revue Centre de documentation Revues en salle Disponible Adversarial defenses for object detectors based on Gabor convolutional layers / Abdollah Amirkhani in The Visual Computer, vol 38 n° 6 (June 2022)
![]()
[article]
Titre : Adversarial defenses for object detectors based on Gabor convolutional layers Type de document : Article/Communication Auteurs : Abdollah Amirkhani, Auteur ; Mohammad Karimi, Auteur Année de publication : 2022 Article en page(s) : pp 1929 - 1944 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] détection d'objet
[Termes IGN] filtre de Gabor
[Termes IGN] reconnaissance de formes
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Despite their many advantages and positive features, the deep neural networks are extremely vulnerable against adversarial attacks. This drawback has substantially reduced the adversarial accuracy of the visual object detectors. To make these object detectors robust to adversarial attacks, a new Gabor filter-based method has been proposed in this paper. This method has then been applied on the YOLOv3 with different backbones, the SSD with different input sizes and on the FRCNN; and thus, six robust object detector models have been presented. In order to evaluate the efficacy of the models, they have been subjected to adversarial training via three types of targeted attacks (TOG-fabrication, TOG-vanishing, and TOG-mislabeling) and three types of untargeted random attacks (DAG, RAP, and UEA). The best average accuracy (49.6%) was achieved by the YOLOv3-d model, and for the PASCAL VOC dataset. This is far superior to the best performance and accuracy and obtained in previous works (25.4%). Empirical results show that, while the presented approach improves the adversarial accuracy of the object detector models, it does not affect the performance of these models on clean data. Numéro de notice : A2022-382 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-021-02256-6 Date de publication en ligne : 24/07/2021 En ligne : https://doi.org/10.1007/s00371-021-02256-6 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100651
in The Visual Computer > vol 38 n° 6 (June 2022) . - pp 1929 - 1944[article]Detecting interchanges in road networks using a graph convolutional network approach / Min Yang in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : Detecting interchanges in road networks using a graph convolutional network approach Type de document : Article/Communication Auteurs : Min Yang, Auteur ; Chenjun Jiang, Auteur ; Xiongfeng Yan, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1119 - 1139 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] analyse vectorielle
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] classification semi-dirigée
[Termes IGN] détection d'objet
[Termes IGN] échangeur routier
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] modélisation
[Termes IGN] noeud
[Termes IGN] Pékin (Chine)
[Termes IGN] réseau neuronal de graphes
[Termes IGN] réseau routier
[Termes IGN] Wuhan (Chine)Résumé : (auteur) Detecting interchanges in road networks benefit many applications, such as vehicle navigation and map generalization. Traditional approaches use manually defined rules based on geometric, topological, or both properties, and thus can present challenges for structurally complex interchange. To overcome this drawback, we propose a graph-based deep learning approach for interchange detection. First, we model the road network as a graph in which the nodes represent road segments, and the edges represent their connections. The proposed approach computes the shape measures and contextual properties of individual road segments for features characterizing the associated nodes in the graph. Next, a semi-supervised approach uses these features and limited labeled interchanges to train a graph convolutional network that classifies these road segments into an interchange and non-interchange segments. Finally, an adaptive clustering approach groups the detected interchange segments into interchanges. Our experiment with the road networks of Beijing and Wuhan achieved a classification accuracy >95% at a label rate of 10%. Moreover, the interchange detection precision and recall were 79.6 and 75.7% on the Beijing dataset and 80.6 and 74.8% on the Wuhan dataset, respectively, which were 18.3–36.1 and 17.4–19.4% higher than those of the existing approaches based on characteristic node clustering. Numéro de notice : A2022-404 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.2024195 Date de publication en ligne : 11/03/2022 En ligne : https://doi.org/10.1080/13658816.2021.2024195 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100716
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1119 - 1139[article]Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images / Lingdong Mao in Landscape and Urban Planning, vol 222 (June 2022)
![]()
[article]
Titre : Large-scale automatic identification of urban vacant land using semantic segmentation of high-resolution remote sensing images Type de document : Article/Communication Auteurs : Lingdong Mao, Auteur ; Zhe Zheng, Auteur ; Xiangfeng Meng, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104384 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Chine
[Termes IGN] détection d'objet
[Termes IGN] grande échelle
[Termes IGN] identification automatique
[Termes IGN] image à haute résolution
[Termes IGN] milieu urbain
[Termes IGN] occupation du sol
[Termes IGN] segmentation d'image
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Urban vacant land is a growing issue worldwide. However, most of the existing research on urban vacant land has focused on small-scale city areas, while few studies have focused on large-scale national areas. Large-scale identification of urban vacant land is hindered by the disadvantage of high cost and high variability when using the conventional manual identification method. Criteria inconsistency in cross-domain identification is also a major challenge. To address these problems, we propose a large-scale automatic identification framework of urban vacant land based on semantic segmentation of high-resolution remote sensing images and select 36 major cities in China as study areas. The framework utilizes deep learning techniques to realize automatic identification and introduces the city stratification method to address the challenge of identification criteria inconsistency. The results of the case study on 36 major Chinese cities indicate two major conclusions. First, the proposed framework of vacant land identification can achieve over 90 percent accuracy of the level of professional auditors with much higher result stability and approximately 15 times higher efficiency compared to the manual identification method. Second, the framework has strong robustness and can maintain high performance in various cities. With the above advantages, the proposed framework provides a practical approach to large-scale vacant land identification in various countries and regions worldwide, which is of great significance for the academic development of urban vacant land and future urban development. Numéro de notice : A2022-267 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.landurbplan.2022.104384 Date de publication en ligne : 03/03/2022 En ligne : https://doi.org/10.1016/j.landurbplan.2022.104384 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100275
in Landscape and Urban Planning > vol 222 (June 2022) . - n° 104384[article]Unsupervised multi-view CNN for salient view selection and 3D interest point detection / Ran Song in International journal of computer vision, vol 130 n° 5 (May 2022)
PermalinkDeep learning for archaeological object detection on LiDAR: New evaluation measures and insights / Marco Fiorucci in Remote sensing, vol 14 n° 7 (April-1 2022)
PermalinkDetermination of building flood risk maps from LiDAR mobile mapping data / Yu Feng in Computers, Environment and Urban Systems, vol 93 (April 2022)
PermalinkResearch on machine intelligent perception of urban geographic location based on high resolution remote sensing images / Jun Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
PermalinkVisual vs internal attention mechanisms in deep neural networks for image classification and object detection / Abraham Montoya Obeso in Pattern recognition, vol 123 (March 2022)
PermalinkMapping global flying aircraft activities using Landsat 8 and cloud computing / Fen Zhao in ISPRS Journal of photogrammetry and remote sensing, vol 184 (February 2022)
PermalinkObject recognition algorithm based on optimized nonlinear activation function-global convolutional neural network / Feng-Ping An in The Visual Computer, vol 38 n° 2 (February 2022)
PermalinkAutomatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)
PermalinkPermalinkPermalink