Descripteur
Documents disponibles dans cette catégorie (25)



Etendre la recherche sur niveau(x) vers le bas
Detection and mitigation of GNSS spoofing via the pseudorange difference between epochs in a multicorrelator receiver / Xiangyong Shang in GPS solutions, vol 26 n° 2 (April 2022)
![]()
[article]
Titre : Detection and mitigation of GNSS spoofing via the pseudorange difference between epochs in a multicorrelator receiver Type de document : Article/Communication Auteurs : Xiangyong Shang, Auteur ; Fuping Sun, Auteur ; Lundong Zhang, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 37 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] anti-leurrage
[Termes IGN] atténuation du signal
[Termes IGN] brouillage
[Termes IGN] détection de leurrage
[Termes IGN] détection du signal
[Termes IGN] filtre de Kalman
[Termes IGN] mesurage de pseudo-distance
[Termes IGN] méthode du maximum de vraisemblance (estimation)
[Termes IGN] qualité du signal
[Termes IGN] récepteur GNSS
[Termes IGN] signal GNSSRésumé : (auteur) Spoofing attacks have become an increasing threat to global navigation satellite system receivers. Existing anti-spoofing algorithms concentrate on the detection of these attacks; however, they are unable to prevent the counterfeit signal, which causes false position and timing results. Some defense techniques require the assistance of other sensors or measurement devices located at different positions. These impose many restrictions on the practical applications of anti-spoofing algorithms. In this study, the multicorrelator estimator, designed initially to prevent multipath signals, is applied to detect and mitigate spoofing. A statistic is proposed for spoofing detection based on the code phase difference between counterfeit and authentic signals. This statistic can significantly reduce the rate of false and missed alarms. Assuming there is no spoofing at the beginning, the pseudorange difference between epochs is derived for spoofing validation, allowing spoofing suppression in a single receiver. Based on this study, an estimation-validation-mitigation structure is presented. A robust extended Kalman filter is proposed to reduce gross errors in the multicorrelator measurements and improve estimation accuracy. Public-spoofing datasets recorded in real environments were used to verify the performance of different parameters. A total of 81 complex correlators were introduced in the experiments. Results show that using the proposed scheme, the position or time offsets caused by spoofing drop from 600 m to approximately 20 m, and the spoofing is mitigated considerably. The proposed method provides an effective anti-spoofing structure that requires only a single antenna and does not require additional sensors. Numéro de notice : A2022-108 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article DOI : 10.1007/s10291-022-01224-4 Date de publication en ligne : 16/01/2022 En ligne : https://doi.org/10.1007/s10291-022-01224-4 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99610
in GPS solutions > vol 26 n° 2 (April 2022) . - n° 37[article]Impact of forest disturbance on InSAR surface displacement time series / Paula M. Bürgi in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : Impact of forest disturbance on InSAR surface displacement time series Type de document : Article/Communication Auteurs : Paula M. Bürgi, Auteur ; Rowena B. Lohman, Auteur Année de publication : 2021 Article en page(s) : pp 128 - 138 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes IGN] changement d'occupation du sol
[Termes IGN] déboisement
[Termes IGN] détection de changement
[Termes IGN] détection du signal
[Termes IGN] erreur de phase
[Termes IGN] erreur systématique
[Termes IGN] image ALOS
[Termes IGN] image radar moirée
[Termes IGN] image Sentinel-SAR
[Termes IGN] retard ionosphèrique
[Termes IGN] retard troposphérique
[Termes IGN] série temporelle
[Termes IGN] Sumatra
[Termes IGN] surveillance géologiqueRésumé : (auteur) As interferometric synthetic aperture radar (InSAR) data improve in their global coverage and temporal sampling, studies of ground deformation using InSAR are becoming feasible even in heavily vegetated regions such as the American Pacific Northwest (PNW) and Sumatra. However, ongoing forest disturbance due to logging, wildfires, or disease can introduce time-variable signals which could be misinterpreted as ground displacements. This study constrains the error introduced into InSAR time series in the presence of time-variable forest disturbance using synthetic data. For satellite platforms with randomly distributed orbital positions in time (e.g., Sentinel-1), mid-time series forest disturbance results in random error on the order of 0.2 and 10 cm/year for 1-year secular and time-variable velocities, respectively. If the orbital positions are not randomly distributed in time (e.g., ALOS-1), a biased error on the order of 10 cm/year is introduced to the inferred secular velocity. A time series using real ALOS-1 data near Eugene, OR, USA, shows agreement with the bias estimated by synthetic models. Mitigation of time-variable land cover change effects can be achieved if their timing is known, either through independent observations of surface properties (e.g., Landsat/Sentinel-2) or through the use of more computationally expensive, nonlinear inversions with additional terms for the timing of height changes. Inclusion of these additional terms reduces the potential for misinterpretation of InSAR signals associated with land surface change as ground deformation. Numéro de notice : A2021-032 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2992938 Date de publication en ligne : 18/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2992938 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96727
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 128 - 138[article]Bayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : Bayesian-deep-learning estimation of earthquake location from single-station observations Type de document : Article/Communication Auteurs : S. Mostafa Mousavi, Auteur ; Gregory C. Beroza, Auteur Année de publication : 2020 Article en page(s) : pp 8211 - 8224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] apprentissage profond
[Termes IGN] classification bayesienne
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection du signal
[Termes IGN] épicentre
[Termes IGN] estimation bayesienne
[Termes IGN] onde sismique
[Termes IGN] régression
[Termes IGN] séisme
[Termes IGN] station d'observation
[Termes IGN] surveillance géologique
[Termes IGN] temps de propagationRésumé : (auteur) We present a deep-learning method for a single-station earthquake location, which we approach as a regression problem using two separate Bayesian neural networks. We use a multitask temporal convolutional neural network to learn epicentral distance and P travel time from 1-min seismograms. The network estimates epicentral distance and P travel time with mean errors of 0.23 km and 0.03 s and standard deviations of 5.42 km and 0.66 s, respectively, along with their epistemic and aleatory uncertainties. We design a separate multi-input network using standard convolutional layers to estimate the back-azimuth angle and its epistemic uncertainty. This network estimates the direction from which seismic waves arrive at the station with a mean error of 1°. Using this information, we estimate the epicenter, origin time, and depth along with their confidence intervals. We use a global data set of earthquake signals recorded within 1° (~112 km) from the event to build the model and demonstrate its performance. Our model can predict epicenter, origin time, and depth with mean errors of 7.3 km, 0.4 s, and 6.7 km, respectively, at different locations around the world. Our approach can be used for fast earthquake source characterization with a limited number of observations and also for estimating the location of earthquakes that are sparsely recorded—either because they are small or because stations are widely separated. Numéro de notice : A2020-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988770 Date de publication en ligne : 06/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988770 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96209
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8211 - 8224[article]Improved indoor positioning based on range-free RSSI fingerprint method / Marcin Uradzinski in Journal of geodetic science, vol 10 n° 1 (January 2020)
![]()
[article]
Titre : Improved indoor positioning based on range-free RSSI fingerprint method Type de document : Article/Communication Auteurs : Marcin Uradzinski, Auteur ; Hang Guo, Auteur ; Min YU, Auteur Année de publication : 2020 Article en page(s) : pp 23 - 28 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Navigation et positionnement
[Termes IGN] Bluetooth
[Termes IGN] détection du signal
[Termes IGN] empreinte
[Termes IGN] plus proche voisin, algorithme du
[Termes IGN] positionnement en intérieur
[Termes IGN] précision du positionnement
[Termes IGN] réseau local sans fil
[Termes IGN] service fondé sur la positionRésumé : (auteur) As the development of modern science and technology, LBS and location-aware computing are increasingly important in the practical applications. Currently, GPS positioning system is a mature positioning technology used widely, but signals are easily absorbed, reflected by buildings, and attenuate seriously. In such situation, GPS positioning is not suitable for using in the indoor environment. Wireless sensor networks, such as ZigBee technology, can provide RSSI (received signal strength indicator) which can be used for positioning, especially indoor positioning, and therefore for location based services (LBS).The authors are focused on the fingerprint database method which is suitable for calculating the coordinates of a pedestrian location. This positioning method can use the signal strength indication between the reference nodes and positioning nodes, and design algorithms for positioning. In the wireless sensor networks, according to whether measuring the distance between the nodes in the positioning process, the positioning modes are divided into two categories which are range-based and range-free positioning modes. This paper describes newly improved indoor positioning method based on RSSI fingerprint database, which is range-free. Presented fingerprint database positioning can provide more accurate positioning results, and the accuracy of establishing fingerprint database will affect the accuracy of indoor positioning. In this paper, we propose a new method about the average threshold and the effective data domain filtering method to optimize the fingerprint database of ZigBee technology. Indoor experiment, which was conducted at the University of Warmia and Mazury, proved that the distance achieved by this system has been extended over 30 meters without decreasing the positioning accuracy. The weighted nearest algorithm was chosen and used to calculate user’s location, and then the results were compared and analyzed. As a result, the positioning accuracy was improved and error did not exceed 0.69 m. Therefore, such system can be easily applied in a bigger space inside the buildings, underground mines or in the other location based services. Numéro de notice : A2020-421 Affiliation des auteurs : non IGN Thématique : POSITIONNEMENT Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1515/jogs-2020-0004 Date de publication en ligne : 04/05/2020 En ligne : https://doi.org/10.1515/jogs-2020-0004 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95479
in Journal of geodetic science > vol 10 n° 1 (January 2020) . - pp 23 - 28[article]
Titre : Uncertainty in radar emitter classification and clustering Titre original : Gestion des incertitudes en identification des modes radar Type de document : Thèse/HDR Auteurs : Guillaume Revillon, Auteur ; Charles Soussen, Directeur de thèse ; A. Mohammad-Djafari, Directeur de thèse Editeur : Paris-Orsay : Université de Paris 11 Paris-Sud Centre d'Orsay Année de publication : 2019 Importance : 181 p. Format : 21 x 30 cm Note générale : bibliographie
Thèse de Doctorat de l’Université Paris-Saclay préparée à l’Université Paris-Sud Sciences et Technologies de l’Information et de la Communication (STIC) Spécialité : Traitement du signal et des imagesLangues : Français (fre) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes IGN] approximation
[Termes IGN] détection du signal
[Termes IGN] écho radar
[Termes IGN] émetteur
[Termes IGN] estimation bayesienne
[Termes IGN] inférence statistique
[Termes IGN] modèle de mélange multilinéaire
[Termes IGN] modulation du signal
[Termes IGN] probabilités
[Termes IGN] valeur aberranteIndex. décimale : THESE Thèses et HDR Résumé : (auteur) In Electronic Warfare, radar signals identification is a supreme asset for decision making in military tactical situations. By providing information about the presence of threats, classification and clustering of radar signals have a significant role ensuring that countermeasures against enemies are well-chosen and enabling detection of unknown radar signals to update databases. Most of the time, Electronic Support Measures systems receive mixtures of signals from different radar emitters in the electromagnetic environment. Hence a radar signal, described by a pulse-to-pulse modulation pattern, is often partially observed due to missing measurements and measurement errors. The identification process relies on statistical analysis of basic measurable parameters of a radar signal which constitute both quantitative and qualitative data. Many general and practical approaches based on data fusion and machine learning have been developed and traditionally proceed to feature extraction, dimensionality reduction and classification or clustering. However, these algorithms cannot handle missing data and imputation methods are required to generate data to use them. Hence, the main objective of this work is to define a classification/clustering framework that handles both outliers and missing values for any types of data. Here, an approach based on mixture models is developed since mixture models provide a mathematically based, flexible and meaningful framework for the wide variety of classification and clustering requirements. The proposed approach focuses on the introduction of latent variables that give us the possibility to handle sensitivity of the model to outliers and to allow a less restrictive modelling of missing data. A Bayesian treatment is adopted for model learning, supervised classification and clustering and inference is processed through a variational Bayesian approximation since the joint posterior distribution of latent variables and parameters is untractable. Some numerical experiments on synthetic and real data show that the proposed method provides more accurate results than standard algorithms. Note de contenu : Introduction
1- State of the art and the selected approach
2- Continuous data
3- Mixed data
4- Temporal evolution data
5- Conclusion and perspectivesNuméro de notice : 25703 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Thèse française Note de thèse : Thèse de Doctorat : Traitement du signal et des images : Paris 11 : 2019 Organisme de stage : Thales, GPI nature-HAL : Thèse DOI : sans Date de publication en ligne : 02/09/2019 En ligne : https://hal.archives-ouvertes.fr/tel-02275817 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94829 Automatic recognition of long period events from volcano tectonic earthquakes at Cotopaxi volcano / Román A. Lara-Cueva in IEEE Transactions on geoscience and remote sensing, vol 54 n° 9 (September 2016)
PermalinkPermalinkAmélioration de la position GNSS en ville par la méthode des tranchées urbaines / M. Voyer in Géomatique expert, n° 93 (01/07/2013)
PermalinkGNSS spoofing detection: Correlating carrier phase with rapid antenna motion / Mark Psiaki in GPS world, vol 24 n° 6 (June 2013)
PermalinkSingle-receiver single-channel multi-frequency GNSS integrity: outliers, slips, and ionospheric disturbances / Peter J.G. Teunissen in Journal of geodesy, vol 87 n° 2 (February 2013)
PermalinkA first set of techniques to detect radio frequency interferences and mitigate their impact on SMOS data / R. Castro in IEEE Transactions on geoscience and remote sensing, vol 50 n° 5 Tome 1 (May 2012)
PermalinkGNSS antenna orientation based on modification of received signal strengths / David Eugen Grimm (2012)
PermalinkCollective detection: enhancing GNSS receiver sensitivity by combining signals from multiple satellites / P. Axelrad in GPS world, vol 21 n° 1 (January 2010)
PermalinkPermalinkAdvanced full-waveform lidar data echo detection: assessing quality of derived terrain and tree height models in an alpine coniferous forest / Adrien Chauve in International Journal of Remote Sensing IJRS, vol 30 n° 19 (October 2009)
![]()
Permalink