Descripteur



Etendre la recherche sur niveau(x) vers le bas
Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model / Yizhuo Li in International journal of geographical information science IJGIS, vol 35 n° 2 (February 2021)
![]()
[article]
Titre : Emotional habitat: mapping the global geographic distribution of human emotion with physical environmental factors using a species distribution model Type de document : Article/Communication Auteurs : Yizhuo Li, Auteur ; Teng Fei, Auteur ; Yingjing Huang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 227 - 249 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Cartographie thématique
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] détection de visage
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] émotion
[Termes descripteurs IGN] entropie
[Termes descripteurs IGN] psychologie
[Termes descripteurs IGN] reconnaissance faciale
[Termes descripteurs IGN] sciences humaines
[Termes descripteurs IGN] visionRésumé : (auteur) Human emotion is an intrinsic psychological state that is influenced by human thoughts and behaviours. Human emotion distribution has been regarded as an important part of emotional geography research. However, it is difficult to form a global scaled map reflecting human emotions at the same sampling density because various emotional sampling data are usually positive occurrences without absence data. In this study, a methodological framework for mapping the global geographic distribution of human emotion is proposed and applied, combining a species distribution model with physical environment factors. State-of-the-art affective computing technology is used to extract human emotions from facial expressions in Flickr photos. Various human emotions are considered as different species to form their ‘habitats’ and predict the suitability, termed as ‘Emotional Habitat’. To our knowledge, this framework is the first method to predict emotional distribution from an ecological perspective. Different geographic distributions of seven dimensional emotions are explored and depicted, and emotional diversity and abnormality are detected at the global scale. These results confirm the effectiveness of our framework and offer new insights to understand the relationship between human emotions and the physical environment. Moreover, our method facilitates further rigorous exploration in emotional geography and enriches its content. Numéro de notice : A2021-037 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2020.1755040 date de publication en ligne : 24/04/2020 En ligne : https://doi.org/10.1080/13658816.2020.1755040 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96746
in International journal of geographical information science IJGIS > vol 35 n° 2 (February 2021) . - pp 227 - 249[article]Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling / Stefanos Georganos in Geocarto international, vol 36 n° 2 ([01/02/2021])
![]()
[article]
Titre : Geographical random forests: a spatial extension of the random forest algorithm to address spatial heterogeneity in remote sensing and population modelling Type de document : Article/Communication Auteurs : Stefanos Georganos, Auteur ; Tais Grippa, Auteur ; Assane Niang Gadiaga, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 121 -1 36 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] autocorrélation spatiale
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] Dakar
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] hétérogénéité spatiale
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] population
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Machine learning algorithms such as Random Forest (RF) are being increasingly applied on traditionally geographical topics such as population estimation. Even though RF is a well performing and generalizable algorithm, the vast majority of its implementations is still ‘aspatial’ and may not address spatial heterogenous processes. At the same time, remote sensing (RS) data which are commonly used to model population can be highly spatially heterogeneous. From this scope, we present a novel geographical implementation of RF, named Geographical Random Forest (GRF) as both a predictive and exploratory tool to model population as a function of RS covariates. GRF is a disaggregation of RF into geographical space in the form of local sub-models. From the first empirical results, we conclude that GRF can be more predictive when an appropriate spatial scale is selected to model the data, with reduced residual autocorrelation and lower Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) values. Finally, and of equal importance, GRF can be used as an effective exploratory tool to visualize the relationship between dependent and independent variables, highlighting interesting local variations and allowing for a better understanding of the processes that may be causing the observed spatial heterogeneity. Numéro de notice : A2021-080 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1595177 date de publication en ligne : 10/06/2019 En ligne : https://doi.org/10.1080/10106049.2019.1595177 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96822
in Geocarto international > vol 36 n° 2 [01/02/2021] . - pp 121 -1 36[article]Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data / Yunhao Zheng in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Chinese tourists in Nordic countries: An analysis of spatio-temporal behavior using geo-located travel blog data Type de document : Article/Communication Auteurs : Yunhao Zheng, Auteur ; Naixia Mou, Auteur ; Lingxian Zhang, Auteur Année de publication : 2021 Article en page(s) : n° 101561 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] accès aux données localisées
[Termes descripteurs IGN] analyse spatio-temporelle
[Termes descripteurs IGN] climat
[Termes descripteurs IGN] comportement
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] géomercatique
[Termes descripteurs IGN] GeoWeb
[Termes descripteurs IGN] ressources web
[Termes descripteurs IGN] Scandinavie
[Termes descripteurs IGN] tourisme
[Termes descripteurs IGN] voyage
[Termes descripteurs IGN] zone boréaleRésumé : (auteur) Geo-located travel blogs, a new data source, enable to achieve more detailed analysis of tourists' spatio-temporal behavior. Taking Chinese tourists in Nordic countries as the research object, this paper focuses on their behavior, seasonal patterns and complex network effects by using geo-located travel blog data collected from Qunar.com. The results show that: (1) Chinese tourists visiting Nordic countries are often experienced in traveling. The local climate during the cold season does not prevent them from pursuing the aurora scenery. (2) The travel behavior of Chinese tourists is spatially heterogeneous. The network analysis reveals that Iceland showcases stronger, compared to the other Nordic countries, community independence and small world effect. (3) During the warm season, Chinese tourists choose a variety of destinations, while in cold season, they tend to choose destinations with higher chances for spotting the northern lights. These results provide helpful information for the tourism management departments of Nordic countries to improve their marketing and development efforts directed for Chinese tourists. Numéro de notice : A2021-006 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101561 date de publication en ligne : 13/10/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101561 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96280
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101561[article]LANet: Local attention embedding to improve the semantic segmentation of remote sensing images / Lei Ding in IEEE Transactions on geoscience and remote sensing, vol 59 n° 1 (January 2021)
![]()
[article]
Titre : LANet: Local attention embedding to improve the semantic segmentation of remote sensing images Type de document : Article/Communication Auteurs : Lei Ding, Auteur ; Hao Tang, Auteur ; Lorenzo Bruzzone, Auteur Année de publication : 2021 Article en page(s) : pp 426 - 435 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] décodage
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] segmentation sémantiqueRésumé : (auteur) The trade-off between feature representation power and spatial localization accuracy is crucial for the dense classification/semantic segmentation of remote sensing images (RSIs). High-level features extracted from the late layers of a neural network are rich in semantic information, yet have blurred spatial details; low-level features extracted from the early layers of a network contain more pixel-level information but are isolated and noisy. It is therefore difficult to bridge the gap between high- and low-level features due to their difference in terms of physical information content and spatial distribution. In this article, we contribute to solve this problem by enhancing the feature representation in two ways. On the one hand, a patch attention module (PAM) is proposed to enhance the embedding of context information based on a patchwise calculation of local attention. On the other hand, an attention embedding module (AEM) is proposed to enrich the semantic information of low-level features by embedding local focus from high-level features. Both proposed modules are lightweight and can be applied to process the extracted features of convolutional neural networks (CNNs). Experiments show that, by integrating the proposed modules into a baseline fully convolutional network (FCN), the resulting local attention network (LANet) greatly improves the performance over the baseline and outperforms other attention-based methods on two RSI data sets. Numéro de notice : A2021-035 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2994150 date de publication en ligne : 27/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2994150 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96737
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 1 (January 2021) . - pp 426 - 435[article]Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia / Meron Awoke Eshetae in Geocarto international, vol 36 n° 1 ([01/01/2021])
![]()
[article]
Titre : Spatial characterization and distribution modelling of Ensete ventricosum (wild and cultivated) in Ethiopia Type de document : Article/Communication Auteurs : Meron Awoke Eshetae, Auteur ; Binyam Tesfaw Hailu, Auteur ; Sebsebe Demissew, Auteur Année de publication : 2021 Article en page(s) : pp 60 - 75 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] données environnementales
[Termes descripteurs IGN] entropie maximale
[Termes descripteurs IGN] Ethiopie
[Termes descripteurs IGN] Musa (genre)
[Termes descripteurs IGN] surface cultivéeRésumé : (Auteur) Enset (Ensete ventricosum) feeds around 20 million people in Ethiopia and is arguably the most important crop for food security and rural livelihoods in the country. Therefore, it is significant to know its spatial characterization and distribution in the country. We use spatial overlay analysis and the maximum entropy (MaxEnt) model for characterizing and modelling, respectively. Inputs for the model include 26 environmental variables—19 bioclimatic and seven biophysical—in addition to the geospatial location of enset field data. The model result was validated using Receiver Operating Characteristic curve method and the area under the curve (AUC) with 0.842 for cultivated enset and 0.760 (wild enset). The highest prediction (>0.5) of both varieties occurred in the southwestern, south-central and north-eastern parts of Ethiopia—17,293.67 km2 (cultivated) and 40,402 km2 (wild) area. The presence of both enset is probabilistically higher at the tropic-cool/sub-humid Agroecological Zones. Numéro de notice : A2021-051 Affiliation des auteurs : non IGN Thématique : FORET/GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1588392 date de publication en ligne : 10/06/2020 En ligne : https://doi.org/10.1080/10106049.2019.1588392 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96773
in Geocarto international > vol 36 n° 1 [01/01/2021] . - pp 60 - 75[article]The use of deep machine learning for the automated selection of remote sensing data for the determination of areas of arable land degradation processes distribution / Dimitri I. Rukhovitch in Remote sensing, vol 13 n° 1 (January 2021)
PermalinkBioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
PermalinkEvaluating geo-tagged Twitter data to analyze tourist flows in Styria, Austria / Johannes Scholz in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkMapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery / Astrid Helena Huechacona-Ruiz in Forests, vol 11 n°11 (November 2020)
PermalinkUsing climate-sensitive 3D city modeling to analyze outdoor thermal comfort in urban areas / Rabeeh Hosseinihaghighi in ISPRS International journal of geo-information, vol 9 n° 11 (November 2020)
PermalinkEvaluating the impact of declining tsetse fly (Glossina pallidipes) habitat in the Zambezi valley of Zimbabwe / Farai Matawa in Geocarto international, vol 35 n° 12 ([01/09/2020])
PermalinkHow do species and data characteristics affect species distribution models and when to use environmental filtering? / Lukáš Gábor in International journal of geographical information science IJGIS, vol 34 n° 8 (August 2020)
PermalinkLos Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkTourism land use simulation for regional tourism planning using POIs and cellular automata / Hong Shi in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkFine-scale dasymetric population mapping with mobile phone and building use data based on grid Voronoi method / Zhenzhong Peng in ISPRS International journal of geo-information, vol 9 n° 6 (June 2020)
Permalink