Descripteur
Documents disponibles dans cette catégorie (49)



Etendre la recherche sur niveau(x) vers le bas
Fast local adaptive multiscale image matching algorithm for remote sensing image correlation / Niccolò Dematteis in Computers & geosciences, vol 159 (February 2022)
![]()
[article]
Titre : Fast local adaptive multiscale image matching algorithm for remote sensing image correlation Type de document : Article/Communication Auteurs : Niccolò Dematteis, Auteur ; Daniele Giordan, Auteur ; Bruno Crippa, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 104988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] appariement automatique
[Termes IGN] appariement d'images
[Termes IGN] données multiéchelles
[Termes IGN] fonte des glaces
[Termes IGN] glacier
[Termes IGN] image Sentinel-MSI
[Termes IGN] implémentation (informatique)
[Termes IGN] Matlab
[Termes IGN] PatagonieRésumé : (auteur) Various studies have shown that image correlation calculated in the space domain outperforms frequency-based methods. However, such an approach usually requires great computational efforts, making it challenging to adopt for surveying fast moving processes like glaciers, particularly over wide areas. We present a local adaptive multiscale image matching algorithm (LAMMA), which repeatedly applies image correlation on grids of increasing spatial resolution and adapts the size of the interrogation area according to the local range of displacements. LAMMA allows reducing the number of calculi of several orders of magnitude and limits the occurrence of displacement outliers. We show an example of LAMMA application on Sentinel-2 images to measure glaciers flow of the Southern Patagonian Icefield, where LAMMA's runtime was comparable to that of frequency-based correlation. LAMMA's Matlab code is freely available on GitHub. Numéro de notice : A2022-094 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.cageo.2021.104988 Date de publication en ligne : 19/11/2021 En ligne : https://doi.org/10.1016/j.cageo.2021.104988 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99528
in Computers & geosciences > vol 159 (February 2022) . - n° 104988[article]An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web / Abdulkadir Memduhoglu in Cartography and Geographic Information Science, vol 49 n° 1 (January 2022)
![]()
[article]
Titre : An approach for multi-scale urban building data integration and enrichment through geometric matching and semantic web Type de document : Article/Communication Auteurs : Abdulkadir Memduhoglu, Auteur ; Melih Basaraner, Auteur Année de publication : 2022 Article en page(s) : pp 1 - 17 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] appariement géométrique
[Termes IGN] approche participative
[Termes IGN] bâtiment
[Termes IGN] données localisées des bénévoles
[Termes IGN] données multiéchelles
[Termes IGN] Istanbul (Turquie)
[Termes IGN] ontologie
[Termes IGN] OpenStreetMap
[Termes IGN] SWRL
[Termes IGN] web des données
[Termes IGN] web sémantique
[Termes IGN] zone urbaineRésumé : (auteur) The advent of Web 2.0 has emerged abundant but often unstructured user-generated georeferenced data, such as those from Volunteered Geographic Information (VGI) initiatives. In many cases, these data can be considered as complementary to the authoritative geospatial data. With the increasing availability of multi-source geospatial data, the efforts for geospatial data integration have gained momentum, aiming at gathering maximum information to answer sophisticated questions that cannot be answered using a single data source. Although there are various approaches employed for this purpose with different degrees of success, semantic web methods and tools have not been tested sufficiently in this scope, particularly for multi-scale urban building data integration and enrichment. Attempting to fill this gap, in this study, multi-source and multi-scale urban building data were integrated with a geometric matching method based on the overlapping area, then a geospatial ontology was developed to define multi-scale representations and detailed cardinality relations of the building features. Finally, some features from the geospatial ontology were then linked to popular knowledge bases such as DBpedia and YAGO. For the exploitation on the web, query and visualization processes were demonstrated using sample questions. The semantic web enabled to model complex cardinality of relations between the features from three different building data sets using inferencing and Semantic Web Rule Language (SWRL). The study showed that integrating different geospatial data sets as a knowledge base can facilitate answering sophisticated questions from different users. Numéro de notice : A2022-016 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1080/15230406.2021.1952108 Date de publication en ligne : 24/08/2021 En ligne : https://doi.org/10.1080/15230406.2021.1952108 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=99147
in Cartography and Geographic Information Science > vol 49 n° 1 (January 2022) . - pp 1 - 17[article]Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space / Min Wu in The Visual Computer, vol 37 n° 7 (July 2021)
![]()
[article]
Titre : Remote sensing image colorization using symmetrical multi-scale DCGAN in YUV color space Type de document : Article/Communication Auteurs : Min Wu, Auteur ; Xin Jin, Auteur ; Qian Jiang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 1707 - 1729 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste de couleurs
[Termes IGN] données multiéchelles
[Termes IGN] image en couleur
[Termes IGN] image RVB
[Termes IGN] niveau de gris (image)
[Termes IGN] réseau antagoniste génératifRésumé : (auteur) Image colorization technique is used to colorize the gray-level image or single-channel image, which is a very significant and challenging task in image processing, especially the colorization of remote sensing images. This paper proposes a new method for coloring remote sensing images based on deep convolution generation adversarial network. The adopted generator model is a symmetrical structure using the principle of auto-encoder, and a multi-scale convolutional module is specially designed to introduce into the generator model. Thus, the proposed generator can enable the whole model to retain more image features in the process of up-sampling and down-sampling. Meanwhile, the discriminator uses residual neural network 18 that can compete with the generator, so that the generator and discriminator can effectively optimize each other. In the proposed method, the color space transformation technique is first utilized to convert remote sensing images from RGB to YUV. Then, the Y channel (a gray-level image) is used as the input of the neural network model to predict UV channels. Finally, the predicted UV channels are concatenated with the original Y channel as a whole YUV that is then transformed into RGB space to get the final color image. Experiments are conducted to test the performance of different image colorization methods, and the results show that the proposed method has good performance in both visual quality and objective indexes on the colorization of remote sensing image. Numéro de notice : A2021-540 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1007/s00371-020-01933-2 Date de publication en ligne : 28/08/2020 En ligne : https://doi.org/10.1007/s00371-020-01933-2 Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98018
in The Visual Computer > vol 37 n° 7 (July 2021) . - pp 1707 - 1729[article]Pan-sharpening via multiscale dynamic convolutional neural network / Jianwen Hu in IEEE Transactions on geoscience and remote sensing, Vol 59 n° 3 (March 2021)
![]()
[article]
Titre : Pan-sharpening via multiscale dynamic convolutional neural network Type de document : Article/Communication Auteurs : Jianwen Hu, Auteur ; Pei Hu, Auteur ; Xudong Kang, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 2231 - 2244 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] données multiéchelles
[Termes IGN] image Geoeye
[Termes IGN] image multibande
[Termes IGN] image panchromatique
[Termes IGN] image Quickbird
[Termes IGN] image Worldview
[Termes IGN] pansharpening (fusion d'images)
[Termes IGN] reconstruction d'imageRésumé : (Auteur) Pan-sharpening is an effective method to obtain high-resolution multispectral images by fusing panchromatic (PAN) images with fine spatial structure and low-resolution multispectral images with rich spectral information. In this article, a multiscale pan-sharpening method based on dynamic convolutional neural network is proposed. The filters in dynamic convolution are generated dynamically and locally by the filter generation network which is different from the standard convolution and strengthens the adaptivity of the network. The dynamic filters are adaptively changed according to the input images. The proposed multiscale dynamic convolutions extract detail feature of PAN image at different scales. Multiscale network structure is beneficial to obtain effective detail features. The weights obtained by the weight generation network are used to adjust the relationship among the detail features in each scale. The GeoEye-1, QuickBird, and WorldView-3 data are used to evaluate the performance of the proposed method. Compared with the widely used state-of-the-art pan-sharpening approaches, the experimental results demonstrate the superiority of the proposed method in terms of both objective quality indexes and visual performance. Numéro de notice : A2021-216 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.3007884 Date de publication en ligne : 16/07/2020 En ligne : https://doi.org/10.1109/TGRS.2020.3007884 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=97206
in IEEE Transactions on geoscience and remote sensing > Vol 59 n° 3 (March 2021) . - pp 2231 - 2244[article]Elevation models for reproducible evaluation of terrain representation / Patrick Kennelly in Cartography and Geographic Information Science, vol 48 n° 1 (January 2021)
![]()
[article]
Titre : Elevation models for reproducible evaluation of terrain representation Type de document : Article/Communication Auteurs : Patrick Kennelly, Auteur ; Tom Patterson, Auteur ; Bernhard Jenny, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 63 - 77 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Photogrammétrie numérique
[Termes IGN] altitude
[Termes IGN] données multiéchelles
[Termes IGN] figuré du terrain
[Termes IGN] modèle numérique de surface
[Termes IGN] réalité de terrain
[Termes IGN] relief
[Termes IGN] représentation du relief
[Termes IGN] reproductibilité
[Termes IGN] visualisation de donnéesRésumé : (auteur) This paper proposes elevation models to promote, evaluate, and compare various terrain representation techniques. Our goal is to increase the reproducibility of terrain rendering algorithms and techniques across different scales and landscapes. We introduce elevation models of varying terrain types, available to the user at no cost, with minimal common data imperfections such as missing data values, resampling artifacts, and seams. Three multiscale elevation models are available, each consisting of a set of elevation grids, centered on the same geographic location, with increasing cell sizes and spatial extents. We also propose a collection of single-scale elevation models of archetypal landforms including folded ridges, a braided riverbed, active and stabilized sand dunes, and a volcanic caldera. An inventory of 78 publications with a total of 155 renderings illustrating terrain visualization techniques guided the selection of landform types in the elevation models. The benefits of using the proposed elevation models include straightforward comparison of terrain representation methods across different publications and better documentation of the source data, which increases the reproducibility of terrain representations. Numéro de notice : A2021-715 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/15230406.2020.1830856 Date de publication en ligne : 04/11/2020 En ligne : https://doi.org/10.1080/15230406.2020.1830856 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96459
in Cartography and Geographic Information Science > vol 48 n° 1 (January 2021) . - pp 63 - 77[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 032-2021011 SL Revue Centre de documentation Revues en salle Disponible Exploring multiscale object-based convolutional neural network (multi-OCNN) for remote sensing image classification at high spatial resolution / Vitor Martins in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
PermalinkDesigning multi-scale maps: lessons learned from existing practices / Marion Dumont in International journal of cartography, Vol 6 n° 1 (March 2020)
PermalinkPermalinkPermalinkProgressive visualization of complex 3D models over the internet / Jing Chen in Transactions in GIS, vol 20 n° 6 (December 2016)
PermalinkThe impact of land use/land cover scale on modelling urban ecosystem services / Darren R. Grafius in Landscape ecology, vol 31 n° 7 (September 2016)
PermalinkAdding intermediate representations in a multi-scale map to enable a smooth zooming / Marion Dumont (2015)
![]()
PermalinkManaging Germany's big imagery data / Mladen Stojic in GEO: Geoconnexion international, vol 13 n° 2 (february 2014)
PermalinkFully automated generalization of a 1:50k map from 1:10k data / Jantien E. Stoter in Cartography and Geographic Information Science, vol 41 n° 1 (January 2014)
PermalinkLe ScaleMaster 2.0 : Une extension du modèle ScaleMaster pour gérer des généralisations multi-échelles automatiques / Guillaume Touya in Cartes & Géomatique, n° 217 (septembre 2013)
![]()
Permalink