Descripteur



Etendre la recherche sur niveau(x) vers le bas
Using OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
![]()
[article]
Titre : Using OpenStreetMap data and machine learning to generate socio-economic indicators Type de document : Article/Communication Auteurs : Daniel Feldmeyer, Auteur ; Claude Meisch, Auteur ; Holger Sauter, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 16 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] arbre aléatoire
[Termes descripteurs IGN] base de données spatiotemporelles
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] chômage
[Termes descripteurs IGN] classification par réseau neuronal
[Termes descripteurs IGN] collectivité territoriale
[Termes descripteurs IGN] données localisées des bénévoles
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] inégalité
[Termes descripteurs IGN] limite administrative
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] OpenStreetMapRésumé : (auteur) Socio-economic indicators are key to understanding societal challenges. They disassemble complex phenomena to gain insights and deepen understanding. Specific subsets of indicators have been developed to describe sustainability, human development, vulnerability, risk, resilience and climate change adaptation. Nonetheless, insufficient quality and availability of data often limit their explanatory power. Spatial and temporal resolution are often not at a scale appropriate for monitoring. Socio-economic indicators are mostly provided by governmental institutions and are therefore limited to administrative boundaries. Furthermore, different methodological computation approaches for the same indicator impair comparability between countries and regions. OpenStreetMap (OSM) provides an unparalleled standardized global database with a high spatiotemporal resolution. Surprisingly, the potential of OSM seems largely unexplored in this context. In this study, we used machine learning to predict four exemplary socio-economic indicators for municipalities based on OSM. By comparing the predictive power of neural networks to statistical regression models, we evaluated the unhinged resources of OSM for indicator development. OSM provides prospects for monitoring across administrative boundaries, interdisciplinary topics, and semi-quantitative factors like social cohesion. Further research is still required to, for example, determine the impact of regional and international differences in user contributions on the outputs. Nonetheless, this database can provide meaningful insight into otherwise unknown spatial differences in social, environmental or economic inequalities. Numéro de notice : A2020-663 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.3390/ijgi9090498 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.3390/ijgi9090498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96139
in ISPRS International journal of geo-information > vol 9 n° 9 (September 2020) . - 16 p.[article]Landuse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
![]()
[article]
Titre : Landuse and land cover identification and disaggregating socio-economic data with convolutional neural network Type de document : Article/Communication Auteurs : Jingtao Yao, Auteur ; Xiangbin Kong, Auteur ; Rattan Lal, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 1109 - 1123 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] densité de population
[Termes descripteurs IGN] désagrégation
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] image Landsat-8
[Termes descripteurs IGN] occupation du sol
[Termes descripteurs IGN] utilisation du solRésumé : (auteur) Numéro de notice : A2020-427 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2019.1568587 date de publication en ligne : 18/03/2019 En ligne : https://doi.org/10.1080/10106049.2019.1568587 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95493
in Geocarto international > vol 35 n° 10 [01/08/2020] . - pp 1109 - 1123[article]Los Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
![]()
[article]
Titre : Los Angeles as a digital place: The geographies of user‐generated content Type de document : Article/Communication Auteurs : Andrea Ballatore, Auteur ; Stefano de Sabbata, Auteur Année de publication : 2020 Article en page(s) : 23 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] centre urbain
[Termes descripteurs IGN] contenu généré par les utilisateurs
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] données multisources
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] exploration de données géographiques
[Termes descripteurs IGN] Foursquare
[Termes descripteurs IGN] Los Angeles
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] OpenStreetMap
[Termes descripteurs IGN] participation du public
[Termes descripteurs IGN] représentation géographique
[Termes descripteurs IGN] réseau social
[Termes descripteurs IGN] réseau social géodépendant
[Termes descripteurs IGN] TwitterRésumé : (auteur) Online representations of places are becoming pivotal in informing our understanding of urban life. Content production on online platforms is grounded in the geography of their users and their digital infrastructure. These constraints shape place representation, that is, the amount, quality, and type of digital information available in a geographic area. In this article we study the place representation of user‐generated content (UGC) in Los Angeles County, relating the spatial distribution of the data to its geo‐demographic context. Adopting a comparative and multi‐platform approach, this quantitative analysis investigates the spatial relationship between four diverse UGC datasets and their context at the census tract level (about 685,000 geo‐located tweets, 9,700 Wikipedia pages, 4 million OpenStreetMap objects, and 180,000 Foursquare venues). The context includes the ethnicity, age, income, education, and deprivation of residents, as well as public infrastructure. An exploratory spatial analysis and regression‐based models indicate that the four UGC platforms possess distinct geographies of place representation. To a moderate extent, the presence of Twitter, OpenStreetMap, and Foursquare data is influenced by population density, ethnicity, education, and income. However, each platform responds to different socio‐economic factors and clusters emerge in disparate hotspots. Unexpectedly, Twitter data tend to be located in denser, more deprived areas, and the geography of Wikipedia appears peculiar and harder to explain. These trends are compared with previous findings for the area of Greater London. Numéro de notice : A2020-671 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/SOCIETE NUMERIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1111/tgis.12600 date de publication en ligne : 02/01/2020 En ligne : https://doi.org/10.1111/tgis.12600 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96156
in Transactions in GIS > Vol 24 n° 4 (August 2020) . - 23 p.[article]Exploratory bivariate and multivariate geovisualizations of a social vulnerability index / Georgianna Strode in Cartographic perspectives, n° 95 (July 2020)
![]()
[article]
Titre : Exploratory bivariate and multivariate geovisualizations of a social vulnerability index Type de document : Article/Communication Auteurs : Georgianna Strode, Auteur ; Victor Mesev, Auteur ; Susanne Bleisch, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : 19 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] analyse bivariée
[Termes descripteurs IGN] analyse multivariée
[Termes descripteurs IGN] analyse spatiale
[Termes descripteurs IGN] carte thématique
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] ethnie
[Termes descripteurs IGN] Floride (Etats-Unis)
[Termes descripteurs IGN] formule d'Euler
[Termes descripteurs IGN] planification stratégique
[Termes descripteurs IGN] prévention
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] signe conventionnel
[Termes descripteurs IGN] sociologie
[Termes descripteurs IGN] vulnérabilité
[Vedettes matières IGN] GéovisualisationRésumé : (auteur) In the United States, the Centers for Disease Control and Prevention (CDC) is the national agency that conducts and supports public health research and practice. Among the CDC’s many achievements is the development of a social vulnerability index (SVI) to aid planners and emergency responders when identifying vulnerable segments of the population, especially during natural hazard events. The index includes an overall social vulnerability ranking as well as four individual themes: socioeconomic, household composition & disability, ethnicity & language, and housing & transportation. This makes the SVI dataset multivariate, but it is typically viewed via maps that show one theme at a time. This paper explores a suite of cartographic techniques that can represent the SVI beyond the univariate view. Specifically, we recommend three techniques: (1) bivariate mapping to illustrate overall vulnerability and population density, (2) multivariate mapping using cartographic glyphs to disaggregate levels of the four vulnerability themes, and (3) visual analytics using Euler diagrams to depict overlap between the vulnerability themes. The CDC’s SVI, and by extension, vulnerability indices in other countries, can be viewed in a variety of cartographic forms that illustrate the location of vulnerable groups of society. Viewing data from various perspectives can facilitate the understanding and analysis of the growing amount and complexity of data. Numéro de notice : A2020-750 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.14714/CP95.1569 date de publication en ligne : 17/03/2020 En ligne : https://doi.org/10.14714/CP95.1569 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96404
in Cartographic perspectives > n° 95 (July 2020) . - 19 p.[article]Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
![]()
[article]
Titre : Spatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships Type de document : Article/Communication Auteurs : Chao Song, Auteur ; Xun Shi, Auteur ; Jinfeng Wang, Auteur Année de publication : 2020 Article en page(s) : pp 277 - 291 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] Chine
[Termes descripteurs IGN] données socio-économiques
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géostatistique
[Termes descripteurs IGN] modélisation spatio-temporelle
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] régression géographiquement pondérée
[Termes descripteurs IGN] santé
[Termes descripteurs IGN] série temporelleRésumé : (auteur) Local regression has an advantage over global regression by allowing coefficients that qualify variables relationships being heterogeneous, where such varying regression relationships are nonstationarity. Spatiotemporally Varying Coefficients (STVC) model is the first Bayesian-based local spatiotemporal regression approach, intending to simultaneously detect spatial and temporal nonstationarity for heterogeneous response-covariate variables relationships, through separately estimating posterior local-scale coefficients over different space areas and time frames. In this paper, we first presented a general Bayesian STVC modelling paradigm as a specification guide to show its commonality in broader geospatial research. Then, we employed it to solve a real-world issue concerning spatiotemporal healthcare-socioeconomic relations, for which we derived data of county-level hospital beds number per capita, as well as data of related socioeconomic factors in northeast China during 2002–2011. Results showed that the STVC model surpassed all the other comparative regressions, in terms of both Bayesian model fitness and predictive ability. Globally, resident savings, financial institutions loans, GDP, and primary industry were identified as key socioeconomic conditions affecting healthcare resources in Northeast China. Temporally, with Time-Coefficients (TC) plots, we found that after 2011, GDP and primary industry would further help improve the overall healthcare level of northeast China. Spatially, with Space-Coefficients (SC) maps, we could directly identify the relative contribution of four socioeconomic covariates’ impacts on healthcare within each administrative county. Bayesian STVC model is an essential development and extension of the local regression family for exploring the spatiotemporal heterogeneous variables relationships, especially under Bayesian statistics, as well as GIScience and spatial statistics. Numéro de notice : A2020-582 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2020.1782469 date de publication en ligne : 08/08/2020 En ligne : https://doi.org/10.1080/19475683.2020.1782469 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95904
in Annals of GIS > vol 26 n° 3 (July 2020) . - pp 277 - 291[article]Delineating and modeling activity space using geotagged social media data / Lingqian Hu in Cartography and Geographic Information Science, vol 47 n° 3 (May 2020)
PermalinkCity-descriptive input data for urban climate models: Model requirements, data sources and challenges / Valéry Masson in Urban climate, vol 31 (March 2020)
PermalinkA comprehensive framework for studying diffusion patterns of imported dengue with individual-based movement data / Haiyan Tao in International journal of geographical information science IJGIS, vol 34 n° 3 (March 2020)
PermalinkPermalinkA thematic mapping method to assess and analyze potential urban hazards and risks caused by flooding / Mohammad Khalid Hossain in Computers, Environment and Urban Systems, vol 79 (January 2020)
PermalinkAnalyzing the recent dynamics of wildland fires in Quercus suber L. woodlands in Sardinia (Italy), Corsica (France) and Catalonia (Spain) / Michele Salis in European Journal of Forest Research, vol 138 n° 3 (June 2019)
PermalinkUnderstanding demographic and socioeconomic biases of geotagged Twitter users at the county level / Jiang Juqin in Cartography and Geographic Information Science, vol 46 n° 3 (May 2019)
PermalinkOntologies pour représenter l’évolution des découpages territoriaux statistiques / Camille Bernard in Revue internationale de géomatique, vol 28 n° 4 (octobre - décembre 2018)
PermalinkUse of unsupervised classification for the determination of prevailing land use typology / Miha Konjar in Geodetski vestnik, vol 61 n° 4 (December 2017 - February 2018)
PermalinkPoint grid map : a new type of thematic map for statistical data associated with geographic points / Mengjie Zhou in Cartography and Geographic Information Science, Vol 44 n° 5 (September 2017)
Permalink