Descripteur
Documents disponibles dans cette catégorie (93)



Etendre la recherche sur niveau(x) vers le bas
Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators / Luis Izquierdo-Horna in Computers, Environment and Urban Systems, vol 96 (September 2022)
![]()
[article]
Titre : Identification of urban sectors prone to solid waste accumulation: A machine learning approach based on social indicators Type de document : Article/Communication Auteurs : Luis Izquierdo-Horna, Auteur ; Miker Damazo, Auteur ; Deyvis Yanayaco, Auteur Année de publication : 2022 Article en page(s) : n° 101834 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] apprentissage automatique
[Termes IGN] classification par forêts d'arbres décisionnels
[Termes IGN] déchet
[Termes IGN] densité de population
[Termes IGN] données socio-économiques
[Termes IGN] Pérou
[Termes IGN] régression logistique
[Termes IGN] zone urbaineRésumé : (auteur) In the last decades, the accumulation of municipal solid waste in urban areas has become a latent concern in our society due to its implications for the exposed population and the possible health and environmental issues it may cause. In this sense, this research study contributes to the timely identification of these sectors according to the anthropogenic characteristics of their residents as dictated by 10 social indicators (i.e., age, education, income, among others) sorted into three assessment categories (sociodemographic, sociocultural, and socioeconomic). Then, the data collected was processed and analyzed using two machine learning algorithms (random forest (RF) and logistic regression (LR)). The primary information that fed the machine learning model was collected through field visits and local/national reports. For this research, the Puente Piedra and Chaclacayo districts, both located in the province of Lima, Peru, were selected as case studies. Results suggest that the most relevant social indicators that help identifying these sectors are monthly income, consumption patterns, age, and household population density. The experiments showed that the RF algorithm has the best performance, since it efficiently identified 63% of the possible solid waste accumulation zones. In addition, both models were capable of determining different classes (AUC – RF = 0.65, AUC – LR = 0.71). Finally, the proposed approach is applicable and reproducible in different sectors of the national Peruvian territory. Numéro de notice : A2022-512 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2022.101834 Date de publication en ligne : 10/06/2022 En ligne : https://doi.org/10.1016/j.compenvurbsys.2022.101834 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101052
in Computers, Environment and Urban Systems > vol 96 (September 2022) . - n° 101834[article]Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference / Xiao Huang in Transactions in GIS, vol 26 n° 4 (June 2022)
![]()
[article]
Titre : Exploring the spatial disparity of home-dwelling time patterns in the USA during the COVID-19 pandemic via Bayesian inference Type de document : Article/Communication Auteurs : Xiao Huang, Auteur ; Yang Xu, Auteur ; Rui Liu, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1939 - 1961 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse multiéchelle
[Termes IGN] disparité
[Termes IGN] distribution spatiale
[Termes IGN] données socio-économiques
[Termes IGN] épidémie
[Termes IGN] estimation bayesienne
[Termes IGN] hétérogénéité spatiale
[Termes IGN] inférence statistique
[Termes IGN] logement
[Termes IGN] maladie virale
[Termes IGN] méthode de Monte-Carlo par chaînes de Markov
[Termes IGN] méthode robusteRésumé : (auteur) In this study, we aim to reveal hidden patterns and confounders associated with policy implementation and adherence by investigating the home-dwelling stages from a data-driven perspective via Bayesian inference with weakly informative priors and by examining how home-dwelling stages in the USA varied geographically, using fine-grained, spatial-explicit home-dwelling time records from a multi-scale perspective. At the U.S. national level, two changepoints are identified, with the former corresponding to March 22, 2020 (9 days after the White House declared the National Emergency on March 13) and the latter corresponding to May 17, 2020. Inspections at U.S. state and county level reveal notable spatial disparity in home-dwelling stage-related variables. A pilot study in the Atlanta Metropolitan area at the Census Tract level reveals that the self-quarantine duration and increase in home-dwelling time are strongly correlated with the median household income, echoing existing efforts that document the economic inequity exposed by the U.S. stay-at-home orders. To our best knowledge, our work marks a pioneering effort to explore multi-scale home-dwelling patterns in the USA from a purely data-driven perspective and in a statistically robust manner. Numéro de notice : A2022-533 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article DOI : 10.1111/tgis.12918 Date de publication en ligne : 17/03/2022 En ligne : https://doi.org/10.1111/tgis.12918 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101081
in Transactions in GIS > vol 26 n° 4 (June 2022) . - pp 1939 - 1961[article]The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events / Sidgley Camargo de Andrade in International journal of geographical information science IJGIS, vol 36 n° 6 (June 2022)
![]()
[article]
Titre : The effect of intra-urban mobility flows on the spatial heterogeneity of social media activity: investigating the response to rainfall events Type de document : Article/Communication Auteurs : Sidgley Camargo de Andrade, Auteur ; João Porto de Albuquerque, Auteur ; Camilo Restrepo-Estrada, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 1140 - 1165 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique web
[Termes IGN] auto-régression
[Termes IGN] distribution spatiale
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] hétérogénéité spatiale
[Termes IGN] mobilité urbaine
[Termes IGN] modélisation spatio-temporelle
[Termes IGN] pluie
[Termes IGN] précipitation
[Termes IGN] Sao Paulo
[Termes IGN] TwitterRésumé : (auteur) Although it is acknowledged that urban inequalities can lead to biases in the production of social media data, there is a lack of studies which make an assessment of the effects of intra-urban movements in real-world urban analytics applications, based on social media. This study investigates the spatial heterogeneity of social media with regard to the regular intra-urban movements of residents by means of a case study of rainfall-related Twitter activity in São Paulo, Brazil. We apply a spatial autoregressive model that uses population and income as covariates and intra-urban mobility flows as spatial weights to explain the spatial distribution of the social response to rainfall events in Twitter vis-à-vis rainfall radar data. Results show high spatial heterogeneity in the response of social media to rainfall events, which is linked to intra-urban inequalities. Our model performance (R2=0.80) provides evidence that urban mobility flows and socio-economic indicators are significant factors to explain the spatial heterogeneity of thematic spatiotemporal patterns extracted from social media. Therefore, urban analytics research and practice should consider not only the influence of socio-economic profile of neighborhoods but also the spatial interaction introduced by intra-urban mobility flows to account for spatial heterogeneity when using social media data. Numéro de notice : A2022-405 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1957898 Date de publication en ligne : 03/08/2021 En ligne : https://doi.org/10.1080/13658816.2021.1957898 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100717
in International journal of geographical information science IJGIS > vol 36 n° 6 (June 2022) . - pp 1140 - 1165[article]Discovering co-location patterns in multivariate spatial flow data / Jiannan Cai in International journal of geographical information science IJGIS, vol 36 n° 4 (April 2022)
![]()
[article]
Titre : Discovering co-location patterns in multivariate spatial flow data Type de document : Article/Communication Auteurs : Jiannan Cai, Auteur ; Mei-Po Kwan, Auteur Année de publication : 2022 Article en page(s) : pp 720 - 748 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse bivariée
[Termes IGN] analyse de groupement
[Termes IGN] analyse univariée
[Termes IGN] autocorrélation spatiale
[Termes IGN] Chicago (Illinois)
[Termes IGN] co-positionnement
[Termes IGN] données de flux
[Termes IGN] données socio-économiques
[Termes IGN] dynamique spatiale
[Termes IGN] enquête
[Termes IGN] exploration de données géographiques
[Termes IGN] migration pendulaire
[Termes IGN] origine - destination
[Termes IGN] voisinage (relation topologique)Résumé : (auteur) Spatial flow co-location patterns (FCLPs) are important for understanding the spatial dynamics and associations of movements. However, conventional point-based co-location pattern discovery methods ignore spatial movements between locations and thus may generate erroneous findings when applied to spatial flows. Despite recent advances, there is still a lack of methods for analyzing multivariate flows. To bridge the gap, this paper formulates a novel problem of FCLP discovery and presents an effective detection method based on frequent-pattern mining and spatial statistics. We first define a flow co-location index to quantify the co-location frequency of different features in flow neighborhoods, and then employ a bottom-up method to discover all frequent FCLPs. To further establish the statistical significance of the results, we develop a flow pattern reconstruction method to model the benchmark null hypothesis of independence conditioning on univariate flow characteristics (e.g. flow autocorrelation). Synthetic experiments with predefined FCLPs verify the advantages of our method in terms of correctness over available alternatives. A case study using individual home-work commuting flow data in the Chicago Metropolitan Area demonstrates that residence- or workplace-based co-location patterns tend to overestimate the co-location frequency of people with different occupations and could lead to inconsistent results. Numéro de notice : A2022-256 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1980217 Date de publication en ligne : 20/09/2021 En ligne : https://doi.org/10.1080/13658816.2021.1980217 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100229
in International journal of geographical information science IJGIS > vol 36 n° 4 (April 2022) . - pp 720 - 748[article]Human movement patterns of different racial-ethnic and economic groups in U.S. top 50 populated cities: What can social media tell us about isolation? / Meiliu Wu in Annals of GIS, vol 28 n° 2 (April 2022)
![]()
[article]
Titre : Human movement patterns of different racial-ethnic and economic groups in U.S. top 50 populated cities: What can social media tell us about isolation? Type de document : Article/Communication Auteurs : Meiliu Wu, Auteur ; Qunying Huang, Auteur Année de publication : 2022 Article en page(s) : pp 161 - 183 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes IGN] analyse de groupement
[Termes IGN] données issues des réseaux sociaux
[Termes IGN] données socio-économiques
[Termes IGN] Etats-Unis
[Termes IGN] ethnie
[Termes IGN] migration humaine
[Termes IGN] mobilité territoriale
[Termes IGN] sociologie
[Termes IGN] TwitterRésumé : (auteur) Many studies have proven that human movement patterns are strongly impacted by individual socioeconomic and demographic background. While many efforts have been made on exploring the influences of age and gender on movement patterns using social media, this study aims to analyse and compare the movement patterns among different racial-ethnic and economic groups using social media (i.e. geotagged tweets) from the U.S. top 50 populated cities. Results show that there are significant differences in number of activity zones and median travel distance across cities and demographic groups, and that power-laws tend to be captured in both spatial and demographic aspects. Additionally, the analysis of outbound-city travels demonstrates that some cities have slightly stronger interaction with others, and that economically disadvantaged populations and racial-ethnic minorities are more restricted in long distance travels, indicating that their spatial mobility is more limited to the local scale. Lastly, an economically-segregated movement pattern is discovered – upper-class neighbourhoods are mostly visited by the upper-class, while lower-class neighbourhoods are mainly accessed by the lower-class – but some racial-ethnic groups can diversify this segregated pattern in the local scale. Numéro de notice : A2022-501 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/19475683.2022.2026471 Date de publication en ligne : 22/01/2022 En ligne : https://doi.org/10.1080/19475683.2022.2026471 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100998
in Annals of GIS > vol 28 n° 2 (April 2022) . - pp 161 - 183[article]Spatial modeling of migration using GIS-based multi-criteria decision analysis: A case study of Iran / Naeim Mijani in Transactions in GIS, vol 26 n° 2 (April 2022)
PermalinkGIS-based employment availabilities by mode of transport in Kuwait / S. Alkheder in Applied geomatics, vol 14 n° 1 (March 2022)
PermalinkAn extended patch-based cellular automaton to simulate horizontal and vertical urban growth under the shared socioeconomic pathways / Yimin Chen in Computers, Environment and Urban Systems, vol 91 (January 2022)
PermalinkThe geography of social media data in urban areas: Representativeness and complementarity / Alvaro Bernabeu-Bautista in ISPRS International journal of geo-information, vol 10 n° 11 (November 2021)
PermalinkDevelopment and analysis of land-use/land-cover spatio-temporal metrics in urban environments: Exploring urban growth patterns and linkages to socio-economic factors / Marta Sapena Moll (2021)
PermalinkSemantic enrichment of secondary activities using smart card data and point of interests: a case study in London / Nilufer Sari Aslam in Annals of GIS, vol 27 n° 1 (January 2021)
PermalinkUsing OpenStreetMap data and machine learning to generate socio-economic indicators / Daniel Feldmeyer in ISPRS International journal of geo-information, vol 9 n° 9 (September 2020)
PermalinkLanduse and land cover identification and disaggregating socio-economic data with convolutional neural network / Jingtao Yao in Geocarto international, vol 35 n° 10 ([01/08/2020])
PermalinkLos Angeles as a digital place: The geographies of user‐generated content / Andrea Ballatore in Transactions in GIS, Vol 24 n° 4 (August 2020)
PermalinkExploratory bivariate and multivariate geovisualizations of a social vulnerability index / Georgianna Strode in Cartographic perspectives, n° 95 (July 2020)
Permalink