Descripteur
Documents disponibles dans cette catégorie (46)



Etendre la recherche sur niveau(x) vers le bas
City3D: Large-scale building reconstruction from airborne LiDAR point clouds / Jin Huang in Remote sensing, vol 14 n° 9 (May-1 2022)
![]()
[article]
Titre : City3D: Large-scale building reconstruction from airborne LiDAR point clouds Type de document : Article/Communication Auteurs : Jin Huang, Auteur ; Jantien E. Stoter, Auteur ; Ravi Peters, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 2254 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] mur
[Termes IGN] polygonale
[Termes IGN] primitive géométrique
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] semis de points
[Termes IGN] toit
[Termes IGN] Triangular Regular Network
[Termes IGN] triangulation de DelaunayRésumé : (auteur) We present a fully automatic approach for reconstructing compact 3D building models from large-scale airborne point clouds. A major challenge of urban reconstruction from airborne LiDAR point clouds lies in that the vertical walls are typically missing. Based on the observation that urban buildings typically consist of planar roofs connected with vertical walls to the ground, we propose an approach to infer the vertical walls directly from the data. With the planar segments of both roofs and walls, we hypothesize the faces of the building surface, and the final model is obtained by using an extended hypothesis-and-selection-based polygonal surface reconstruction framework. Specifically, we introduce a new energy term to encourage roof preferences and two additional hard constraints into the optimization step to ensure correct topology and enhance detail recovery. Experiments on various large-scale airborne LiDAR point clouds have demonstrated that the method is superior to the state-of-the-art methods in terms of reconstruction accuracy and robustness. In addition, we have generated a new dataset with our method consisting of the point clouds and 3D models of 20k real-world buildings. We believe this dataset can stimulate research in urban reconstruction from airborne LiDAR point clouds and the use of 3D city models in urban applications. Numéro de notice : A2022-387 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/IMAGERIE Nature : Article DOI : 10.3390/rs14092254 Date de publication en ligne : 07/05/2022 En ligne : https://doi.org/10.3390/rs14092254 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100667
in Remote sensing > vol 14 n° 9 (May-1 2022) . - n° 2254[article]Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands / Ravi Peters in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 3 (March 2022)
![]()
[article]
Titre : Automated 3D reconstruction of LoD2 and LoD1 models for All 10 million buildings of the Netherlands Type de document : Article/Communication Auteurs : Ravi Peters, Auteur ; Balazs Dukai, Auteur ; Stelios Vitalis, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : pp 165 - 170 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Géomatique
[Termes IGN] données lidar
[Termes IGN] empreinte
[Termes IGN] itération
[Termes IGN] modèle 3D de l'espace urbain
[Termes IGN] niveau de détail
[Termes IGN] Pays-Bas
[Termes IGN] qualité des données
[Termes IGN] reconstruction 3D du bâti
[Termes IGN] toit
[Termes IGN] Web Map Tile ServiceRésumé : (auteur) In this paper, we present our workflow to automatically reconstruct three-dimensional (3D) building models based on two-dimensional building polygons and a lidar point cloud. The workflow generates models at different levels of detail (LoDs) to support data requirements of different applications from one consistent source. Specific attention has been paid to make the workflow robust to quickly run a new iteration in case of improvements in an algorithm or in case new input data become available. The quality of the reconstructed data highly depends on the quality of the input data and is monitored in several steps of the process. A 3D viewer has been developed to view and download the openly available 3D data at different LoDs in different formats. The workflow has been applied to all 10 million buildings of the Netherlands. The 3D service will be updated after new input data becomes available. Numéro de notice : A2022-200 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00032R2 Date de publication en ligne : 01/03/2022 En ligne : https://doi.org/10.14358/PERS.21-00032R2 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100002
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 3 (March 2022) . - pp 165 - 170[article]Building footprint extraction in Yangon city from monocular optical satellite image using deep learning / Hein Thura Aung in Geocarto international, vol 37 n° 3 ([01/03/2022])
![]()
[article]
Titre : Building footprint extraction in Yangon city from monocular optical satellite image using deep learning Type de document : Article/Communication Auteurs : Hein Thura Aung, Auteur ; Sao Hone Pha, Auteur ; Wataru Takeuchi, Auteur Année de publication : 2022 Article en page(s) : pp 792 - 812 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage profond
[Termes IGN] Birmanie
[Termes IGN] détection du bâti
[Termes IGN] empreinte
[Termes IGN] image Geoeye
[Termes IGN] image isolée
[Termes IGN] réseau antagoniste génératif
[Termes IGN] vision monoculaireRésumé : (auteur) In this research, building footprints in Yangon City, Myanmar are extracted only from monocular optical satellite image by using conditional generative adversarial network (CGAN). Both training dataset and validating dataset are created from GeoEYE image of Dagon Township in Yangon City. Eight training models are created according to the change of values in three training parameters; learning rate, β1 term of Adam, and number of filters in the first convolution layer of the generator and the discriminator. The images of the validating dataset are divided into four image groups; trees, buildings, mixed trees and buildings, and pagodas. The output images of eight trained models are transformed to the vector images and then evaluated by comparing with manually digitized polygons using completeness, correctness and F1 measure. According to the results, by using CGAN, building footprints can be extracted up to 71% of completeness, 81% of correctness and 69% of F1 score from only monocular optical satellite image. Numéro de notice : A2022-345 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/10106049.2020.1740949 Date de publication en ligne : 20/03/2020 En ligne : https://doi.org/10.1080/10106049.2020.1740949 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100526
in Geocarto international > vol 37 n° 3 [01/03/2022] . - pp 792 - 812[article]Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study / Xuebo Yang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 11 (November 2021)
![]()
[article]
Titre : Footprint size design of large-footprint full-waveform LiDAR for forest and topography applications: A theoretical study Type de document : Article/Communication Auteurs : Xuebo Yang, Auteur ; Cheng Wang, Auteur ; Xiaohuan Xi, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 9745 - 9757 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes IGN] données lidar
[Termes IGN] données localisées 3D
[Termes IGN] empreinte
[Termes IGN] extraction de la végétation
[Termes IGN] forme d'onde pleine
[Termes IGN] hauteur des arbres
[Termes IGN] lidar à retour d'onde complète
[Termes IGN] onde lidar
[Termes IGN] processus gaussien
[Termes IGN] signal lidarRésumé : (auteur) LiDAR footprint, defined as the illumination area of LiDAR sensor on the ground, is the fundamental unit that the sensor collects information from. The design of footprint size crucially influences the acquired LiDAR signals. For large-footprint full-waveform LiDAR, a well-designed footprint size is indispensable to acquire accurate and complete vertical profiles of scene targets. The methods that design the footprint size are increasingly needed to satisfy various application requirements. In this study, an analytical method to designing the footprint size is proposed for forest and topography applications. It is established based on a mixture Gaussian model and the designed footprint size ensures the signals of vegetation and ground can be completely extracted. Experiment results with our method show that the footprint size is preferably in the range of 10.6–25.0 m for forest application, while it is less than 32.3 m for topography application. The intersection of the two sets satisfies both applications. Furthermore, a series of sensibility studies were performed to analyze the influence of multiple key parameters to the optimal footprint size, including the scene characteristics, instrumental configurations, and application requirements. This study provides a theoretical basis for the design of future large-footprint full-waveform laser altimeters. Numéro de notice : A2021-812 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2021.3054324 Date de publication en ligne : 08/02/2021 En ligne : https://doi.org/10.1109/TGRS.2021.3054324 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98885
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 11 (November 2021) . - pp 9745 - 9757[article]A deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)
![]()
[article]
Titre : A deep multi-modal learning method and a new RGB-depth data set for building roof extraction Type de document : Article/Communication Auteurs : Mehdi Khoshboresh Masouleh, Auteur ; Reza Shah-Hosseini, Auteur Année de publication : 2021 Article en page(s) : pp 759 - 766 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] apprentissage automatique
[Termes IGN] détection du bâti
[Termes IGN] données multisources
[Termes IGN] effet de profondeur cinétique
[Termes IGN] empreinte
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] image RVB
[Termes IGN] Indiana (Etats-Unis)
[Termes IGN] réseau neuronal convolutif
[Termes IGN] réseau neuronal profond
[Termes IGN] segmentation d'image
[Termes IGN] superpixel
[Termes IGN] toitRésumé : (Auteur) This study focuses on tackling the challenge of building mapping in multi-modal remote sensing data by proposing a novel, deep superpixel-wise convolutional neural network called DeepQuantized-Net, plus a new red, green, blue (RGB)-depth data set named IND. DeepQuantized-Net incorporated two practical ideas in segmentation: first, improving the object pattern with the exploitation of superpixels instead of pixels, as the imaging unit in DeepQuantized-Net. Second, the reduction of computational cost. The generated data set includes 294 RGB-depth images (256 training images and 38 test images) from different locations in the state of Indiana in the U.S., with 1024 × 1024 pixels and a spatial resolution of 0.5 ftthat covers different cities. The experimental results using the IND data set demonstrates the mean F1 scores and the average Intersection over Union scores could increase by approximately 7.0% and 7.2% compared to other methods, respectively. Numéro de notice : A2021-677 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00007R2 Date de publication en ligne : 01/10/2021 En ligne : https://doi.org/10.14358/PERS.21-00007R2 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=98878
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 10 (October 2021) . - pp 759 - 766[article]Réservation
Réserver ce documentExemplaires (1)
Code-barres Cote Support Localisation Section Disponibilité 105-2021101 SL Revue Centre de documentation Revues en salle Disponible A novel method based on deep learning, GIS and geomatics software for building a 3D city model from VHR satellite stereo imagery / Massimiliano Pepe in ISPRS International journal of geo-information, vol 10 n° 10 (October 2021)
PermalinkFast unsupervised multi-scale characterization of urban landscapes based on Earth observation data / Claire Teillet in Remote sensing, vol 13 n° 12 (June-2 2021)
Permalink3D reconstruction of bridges from airborne laser scanning data and cadastral footprints / Steffen Goebbels in Journal of Geovisualization and Spatial Analysis, vol 5 n° 1 (June 2021)
PermalinkRefinement of interferometric SAR parameters using digital terrain model as an external reference / Jyunpei Uemoto in ISPRS Journal of photogrammetry and remote sensing, vol 175 (May 2021)
PermalinkTopological integration of BIM and geospatial water utility networks across the building envelope / Thomas Gilbert in Computers, Environment and Urban Systems, vol 86 (March 2021)
PermalinkAutomatic filtering and 2D modeling of airborne laser scanning building point cloud / Fayez Tarsha-Kurdi in Transactions in GIS, Vol 25 n° 1 (February 2021)
PermalinkA heuristic approach to the generalization of complex building groups in urban villages / Wenhao Yu in Geocarto international, vol 36 n° 2 ([01/02/2021])
PermalinkAmélioration et adaptation du protocole de mesure d’empreintes d’abrasion par photogrammétrie / Hiba Sayeh (2021)
PermalinkAutomatic building footprint extraction from UAV images using neural networks / Zoran Kokeza in Geodetski vestnik, vol 64 n° 4 (December 2020 - February 2021)
PermalinkUrban Wi-Fi fingerprinting along a public transport route / Guenther Retscher in Journal of applied geodesy, vol 14 n° 4 (October 2020)
Permalink