Descripteur



Etendre la recherche sur niveau(x) vers le bas
Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates / Robert E. Keane in Forest ecology and management, vol 477 ([01/12/2020])
![]()
[article]
Titre : Bioclimatic modeling of potential vegetation types as an alternative to species distribution models for projecting plant species shifts under changing climates Type de document : Article/Communication Auteurs : Robert E. Keane, Auteur ; Lisa M. Holsinger, Auteur ; Rachel Loehman, Auteur Année de publication : 2020 Article en page(s) : 12 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] carte de la végétation
[Termes descripteurs IGN] changement climatique
[Termes descripteurs IGN] classification par forêts aléatoires
[Termes descripteurs IGN] distribution spatiale
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] habitat forestier
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] modèle dynamique
[Termes descripteurs IGN] modélisation de la forêt
[Termes descripteurs IGN] Montana (Etats-Unis)
[Termes descripteurs IGN] substitution
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) Land managers need new tools for planning novel futures due to climate change. Species distribution modeling (SDM) has been used extensively to predict future distributions of species under different climates, but their map products are often too coarse for fine-scale operational use. In this study we developed a flexible, efficient, and robust method for mapping current and future distributions and abundances of vegetation species and communities at the fine spatial resolutions that are germane to land management. First, we mapped Potential Vegetation Types (PVTs) using conventional statistical modeling techniques (Random Forests) that used bioclimatic ecosystem process and climate variables as predictors. We obtained over 50% accuracy across 13 mapped PVTs for our study area. We then applied future climate projections as climate input to the Random Forest model to generate future PVT maps, and used field data describing the occurrence of tree and non-tree species in each PVT category to model and map species distribution for current and future climate. These maps were then compared to two previous SDM mapping efforts with over 80% agreement and equivalent accuracy. Because PVTs represent the biophysical potential of the landscape to support vegetation communities as opposed to the vegetation that currently exists, they can be readily linked to climate forecasts and correlated with other, climate-sensitive ecological processes significant in land management, such as fire regimes and site productivity. Numéro de notice : A2020-624 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118498 date de publication en ligne : 18/08/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118498 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96022
in Forest ecology and management > vol 477 [01/12/2020] . - 12 p.[article]Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks / Felix Schiefer in ISPRS Journal of photogrammetry and remote sensing, vol 170 (December 2020)
![]()
[article]
Titre : Mapping forest tree species in high resolution UAV-based RGB-imagery by means of convolutional neural networks Type de document : Article/Communication Auteurs : Felix Schiefer, Auteur ; Teja Kattenborn, Auteur ; Annett Frick, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 205-215 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] carte forestière
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] Forêt-Noire, massif de la
[Termes descripteurs IGN] image à haute résolution
[Termes descripteurs IGN] image captée par drone
[Termes descripteurs IGN] image RVB
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] inventaire forestier local
[Termes descripteurs IGN] segmentation sémantique
[Vedettes matières IGN] Inventaire forestierRésumé : (Auteur) The use of unmanned aerial vehicles (UAVs) in vegetation remote sensing allows a time-flexible and cost-effective acquisition of very high-resolution imagery. Still, current methods for the mapping of forest tree species do not exploit the respective, rich spatial information. Here, we assessed the potential of convolutional neural networks (CNNs) and very high-resolution RGB imagery from UAVs for the mapping of tree species in temperate forests. We used multicopter UAVs to obtain very high-resolution ( Numéro de notice : A2020-706 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.10.015 date de publication en ligne : 03/11/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.10.015 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96236
in ISPRS Journal of photogrammetry and remote sensing > vol 170 (December 2020) . - pp 205-215[article]See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning / Zhouxin Xi in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : See the forest and the trees: Effective machine and deep learning algorithms for wood filtering and tree species classification from terrestrial laser scanning Type de document : Article/Communication Auteurs : Zhouxin Xi, Auteur ; Christopher Hopkinson, Auteur ; Stewart B. Rood, Auteur ; Derek R. Peddle, Auteur Année de publication : 2020 Article en page(s) : pp 1 - 16 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] apprentissage automatique
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] gestion forestière
[Termes descripteurs IGN] semis de points
[Termes descripteurs IGN] variation saisonnièreRésumé : (auteur) Determining tree species composition in natural forests is essential for effective forest management. Species classification at the individual tree level requires fine-scale traits which can be derived through terrestrial laser scanning (TLS) point clouds. A generalizable species classification framework also needs to decouple seasonal foliage variation from deciduous species, for which wood filtering is applicable. Different machine learning and deep learning models are feasible for wood filtering and species classification. We investigated 13 machine learning and deep learning classifiers for 9 species, and 15 classifiers for filtering wood points from TLS plot scans. Each classifier was evaluated using the criteria of mean Intersection over Union accuracy (mIoU), training stability and time cost. On average, deep learning classifiers outperformed machine learning classifiers by 10% and 5% in terms of wood and species classification mIoU, respectively. PointNet++ provided the best species classifier, with the highest mIoU (0.906), stability, and moderate time cost. Among wood classifiers, UNet achieved the top mIoU (0.839) while ResNet-50 was recommended for rapid trial and error testing. Across the classifications, the factors of input resolution, attributes and features were also analyzed. Hot zones of species classification with PointNet++ were visualized to indicate how AI interpret species traits. Numéro de notice : A2020-533 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.001 date de publication en ligne : 10/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.001 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95718
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 1 - 16[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 SL Revue Centre de documentation Revues en salle Disponible 081-2020103 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Tree species classification using structural features derived from terrestrial laser scanning / Louise Terryn in ISPRS Journal of photogrammetry and remote sensing, vol 168 (October 2020)
![]()
[article]
Titre : Tree species classification using structural features derived from terrestrial laser scanning Type de document : Article/Communication Auteurs : Louise Terryn, Auteur ; Kim Calders, Auteur ; Mathias I. Disney, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 170 - 181 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse comparative
[Termes descripteurs IGN] arbre (flore)
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification par régression logistique multinomiale
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] composition d'un peuplement forestier
[Termes descripteurs IGN] couvert forestier
[Termes descripteurs IGN] diamètre à hauteur de poitrine
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] inventaire forestier (techniques et méthodes)
[Termes descripteurs IGN] ombre
[Termes descripteurs IGN] semis de pointsRésumé : (auteur) Fast and automated collection of forest data, such as species composition information, is required to support climate mitigation actions. Recently, there have been significant advances in the use of terrestrial laser scanning (TLS) instruments, which facilitate the capture of detailed forest structure. However, for tree species recognition the structural information from TLS has mainly been used to complement spectral information. TLS-only classification studies have been limited in size and diversity of plot forest types. In this paper, we investigate the potential of TLS for tree species classification. We used quantitative structure models to determine 17 structural tree features. These features were computed for 758 trees of five tree species, including two understory species, of a 1.4 hectare mixed deciduous forest plot. Three classification methods were compared: k-nearest neighbours, multinomial logistic regression and support vector machine. We assessed the potential underlying causes for structural differences with principal component analysis. We obtained classification success rates of approximately 80%, however, with producer accuracies for three of the five species ranging from 0 to 60%. Low producer accuracies were the result of a high intra- and low inter-species variability. These effects were, respectively, caused by a high size-dependency of the structural features and a convergence of structural traits across species as a result of the individual tree position in the forest canopy and shade tolerance. Nevertheless, the producer accuracies could be improved through sensitivity vs. specificity trade-offs, with over 50% for all species being obtainable. The high intra -and low inter-species variability complicate the classification. Furthermore, the classification performance and best classification method greatly depend on its targeted application. In conclusion, this study proves the added value of TLS for tree species classification but also shows that TLS opens up potential for testing and further development of ecological theory. Numéro de notice : A2020-636 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.08.009 date de publication en ligne : 21/08/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.08.009 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96059
in ISPRS Journal of photogrammetry and remote sensing > vol 168 (October 2020) . - pp 170 - 181[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020101 SL Revue Centre de documentation Revues en salle Disponible 081-2020103 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020102 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis / T. Poblete in ISPRS Journal of photogrammetry and remote sensing, vol 162 (April 2020)
![]()
[article]
Titre : Detection of Xylella fastidiosa infection symptoms with airborne multispectral and thermal imagery: Assessing bandset reduction performance from hyperspectral analysis Type de document : Article/Communication Auteurs : T. Poblete, Auteur ; C. Camino, Auteur ; P.S.A. Beck, Auteur Année de publication : 2020 Article en page(s) : pp 27 - 40 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] chlorophylle
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] espèce végétale
[Termes descripteurs IGN] fluorescence
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multibande
[Termes descripteurs IGN] image satellite
[Termes descripteurs IGN] image thermique
[Termes descripteurs IGN] Italie
[Termes descripteurs IGN] maladie bactérienne
[Termes descripteurs IGN] maladie phytosanitaire
[Termes descripteurs IGN] Olea europaea
[Termes descripteurs IGN] stress hydrique
[Termes descripteurs IGN] surveillance de la végétation
[Termes descripteurs IGN] télédétection aérienne
[Termes descripteurs IGN] traitement d'imageRésumé : (auteur) Xylella fastidiosa (Xf) is a harmful plant pathogenic bacterium, able to infect over 500 plant species worldwide. Successful eradication and containment strategies for harmful pathogens require large-scale monitoring techniques for the detection of infected hosts, even when they do not display visual symptoms. Although a previous study using airborne hyperspectral and thermal imagery has shown promising results for the early detection of Xf-infected olive (Olea europaea) trees, further work is needed when adopting these techniques for large scale monitoring using multispectral cameras on board airborne platforms and satellites. We used hyperspectral and thermal imagery collected during a two-year airborne campaign in a Xf-infected area in southern Italy to assess the performance of spectrally constrained machine-learning algorithms for this task. The algorithms were used to assess multispectral bandsets, selected from the original hyperspectral imagery, that were compatible with large-scale monitoring from unmanned platforms and manned aircraft. In addition, the contribution of solar–induced chlorophyll fluorescence (SIF) and the temperature-based Crop Water Stress Index (CWSI) retrieved from hyperspectral and thermal imaging, respectively, were evaluated to quantify their relative importance in the algorithms used to detect Xf infection. The detection performance using support vector machine algorithms decreased from ∼80% (kappa, κ = 0.42) when using the original full hyperspectral dataset including SIF and CWSI to ∼74% (κ = 0.36) when the optimal set of six spectral bands most sensitive to Xf infection were used in addition to the CWSI thermal indicator. When neither SIF nor CWSI were used, the detection yielded less than 70% accuracy (decreasing κ to very low performance, 0.29), revealing that tree temperature was more important than chlorophyll fluorescence for the Xf detection. This work demonstrates that large-scale Xf monitoring can be supported using airborne platforms carrying multispectral and thermal cameras with a limited number of spectral bands (e.g., six to 12 bands with 10 nm bandwidths) as long as they are carefully selected by their sensitivity to the Xf symptoms. More precisely, the blue (bands between 400 and 450 nm to derive the NPQI index) and thermal (to derive CWSI from tree temperature) were the most critical spectral regions for their sensitivity to Xf symptoms in olive. Numéro de notice : A2020-120 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.02.010 date de publication en ligne : 18/02/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.02.010 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=94745
in ISPRS Journal of photogrammetry and remote sensing > vol 162 (April 2020) . - pp 27 - 40[article]Mapping of forest tree distribution and estimation of forest biodiversity using Sentinel-2 imagery in the University Research Forest Taxiarchis in Chalkidiki, Greece / Maria Kampouri in Geocarto international, vol 34 n° 12 ([15/09/2019])
PermalinkPartition idéalisée et régionalisée de la composition en espèces ligneuses des forêts françaises / Jean-Daniel Bontemps in Ecoscience, vol 26 n° 4 (2019)
PermalinkBackground mortality drivers of European tree species: climate change matters / Adrien Taccoen in Proceedings of the Royal society B : Biological sciences, Vol 286 n° 1900 (April 2019)
PermalinkModeling tree-growth : Assessing climate suitability of temperate forests growing in Moncayo Natural Park (Spain) / Edurne Martínez del Castillo in Forest ecology and management, vol 435 (1 March 2019)
PermalinkTree species classification in tropical forests using visible to shortwave infrared WorldView-3 images and texture analysis / Matheus Pinheiro Ferreira in ISPRS Journal of photogrammetry and remote sensing, vol 149 (March 2019)
PermalinkSpecies mixing effects on forest productivity : A case study at stand-, species- and tree-level in the Netherlands / Huicui Lu in Forests, vol 9 n° 11 (November 2018)
PermalinkConnecting infrared spectra with plant traits to identify species / Maria F. Buitrago in ISPRS Journal of photogrammetry and remote sensing, vol 139 (May 2018)
PermalinkEstimating stand density, biomass and tree species from very high resolution stereo-imagery – towards an all-in-one sensor for forestry applications? / Fabian E. Fassnacht in Forestry, an international journal of forest research, vol 90 n° 5 (December 2017)
PermalinkRemote sensing of species diversity using Landsat 8 spectral variables / Sabelo Madonsela in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
PermalinkTree species classification using within crown localization of waveform LiDAR attributes / Rosmarie Blomley in ISPRS Journal of photogrammetry and remote sensing, vol 133 (November 2017)
Permalink