Descripteur



Etendre la recherche sur niveau(x) vers le bas
A new small area estimation algorithm to balance between statistical precision and scale / Cédric Vega in International journal of applied Earth observation and geoinformation, vol 97 (May 2021)
![]()
[article]
Titre : A new small area estimation algorithm to balance between statistical precision and scale Type de document : Article/Communication Auteurs : Cédric Vega , Auteur ; Jean-Pierre Renaud, Auteur ; Ankit Sagar
, Auteur ; Olivier Bouriaud
, Auteur
Année de publication : 2021 Projets : LUE / , DIABOLO / Packalen, Tuula, ARBRE/CHM-era / Jolly, Anne Article en page(s) : n° 102303 Note générale : bibliographie
This research was funded by The French Environmental Management Agency (ADEME), grant number 16-60-C0007. The methods and algorithms for processing photogrammetric data were supported by DIABOLO project from the European Union’s Horizon 2020 research and innovation program under grant agreement No 633464, as well as CHM-ERA project from the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (ANR-11-LABX-0002-01, Lab of Excellence ARBRE). Ankit Sagar received the financial support of the French PIA project “Lorraine Université d’Excellence”, reference ANR-15-IDEX-04-LUE, through the project Impact DeepSurf.Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] arbre BSP
[Termes descripteurs IGN] capital sur pied
[Termes descripteurs IGN] données auxiliaires
[Termes descripteurs IGN] données de terrain
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] inventaire forestier national (données France)
[Termes descripteurs IGN] réduction d'échelle
[Termes descripteurs IGN] seuillage
[Termes descripteurs IGN] surface terrière
[Vedettes matières IGN] SylvicultureRésumé : (auteur) Combining national forest inventory (NFI) data with auxiliary information allows downscaling and improving the precision of NFI estimates for small domains, where normally too few field plots are available to produce reliable estimates. In most situations, small domains represent administrative units that could greatly vary in size and forested area. In small and poorly sampled domains, the precision of estimates often drop below expected standards.
To tackle this issue, we introduce a downscaling algorithm generating the smallest possible groups of domains satisfying prescribed sampling density and estimation error. The binary space partitioning algorithm recursively divides the population of domains in two groups while the prescribed precision conditions are fulfilled.
The algorithm was tested on two major forest attributes (i.e. growing stock and basal area) in an area of 7,500 km2 dominated by hardwood forests in the centre of France. The estimation domains consisted in 157 municipalities. The field data included 819 NFI plots surveyed during a 5 years period. The auxiliary data consisted in 48 metrics derived from a forest map, photogrammetric models and Landsat images. A model-assisted framework was used for estimation. For each forest attribute, the best model was selected using a best-subset approach using a Bayesian Information Criteria. The retained models explained 58% and 41% of the observed variance for the growing stocks and basal areas respectively. The performance of the algorithm was evaluated using a minimum of 3 NFI points per domain and estimation errors varying from 10 to 50%.
For a target estimation error set to 10%, the algorithm led to a limited number of estimation domains ( The algorithm provides a flexible estimation framework for small area estimation. The key advantages of the approach are relying on its capacity to produce estimations based on a preselected precision threshold and to produce results over the whole area of interest, avoiding areas without any estimates. The algorithm could also be used on any kind of polygon layers (not only administrative ones), provided that the field sampling design enable estimation. This makes the proposed algorithm a convenient tool notably for decision makers and forest managers.Numéro de notice : A2021-067 Affiliation des auteurs : LIF+Ext (2020- ) Thématique : FORET Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.jag.2021.102303 date de publication en ligne : 25/01/2021 En ligne : https://doi.org/10.1016/j.jag.2021.102303 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96992
in International journal of applied Earth observation and geoinformation > vol 97 (May 2021) . - n° 102303[article]Optimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale / Linling Tang in IEEE Transactions on geoscience and remote sensing, vol 59 n° 2 (February 2021)
![]()
[article]
Titre : Optimization of multi-ecosystem model ensembles to simulate vegetation growth at the global scale Type de document : Article/Communication Auteurs : Linling Tang, Auteur ; Qian Lei, Auteur ; Weizhe Liu, Auteur ; et al., Auteur Année de publication : 2021 Article en page(s) : pp 962 - 978 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Applications de télédétection
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] écosystème
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] Leaf Area Index
[Termes descripteurs IGN] modèle de simulation
[Termes descripteurs IGN] optimisation (mathématiques)
[Termes descripteurs IGN] optimisation par essaim de particulesRésumé : (auteur) Process-based ecosystem models are increasingly used to simulate the effects of a changing environment on vegetation growth in the past, present, and future. To improve the simulation, the multimodel ensemble mean (MME) and ensemble Bayesian model averaging (EBMA) methods are often used in optimizing the integration of ecosystem model ensemble. These two methods were compared with four other optimization techniques, including genetic algorithm (GA), particle swarm optimization (PSO), cuckoo search (CS), and interior-point method (IPM), to evaluate their efficiency in this article. Here, we focused on eight commonly used ecosystem models to simulate vegetation growth, represented by the growing season leaf area index (LAIgs), collected globally from 2000 to 2014. The performances of the multimodel ensembles and individual models were compared using the satellite-observed LAI products as the reference. Generally, ensemble simulations provide more accurate estimates than individual models. There were significant performance differences among the six tested methods. The IPM ensemble model simulated LAIgs more accurately than the other tested models, as the reduction in the root-mean-square error was 84.99% higher than the MME results and 61.50% higher than the EBMA results. Thus, IPM optimization can reproduce LAIgs trends accurately for 91.62% of the global vegetated area, which is double the area of the results from MME. Furthermore, the contributions and uncertainties of the individual models in the final simulated IPM LAIgs changes indicated that the best individual model (CABLE) showed the greatest area fraction for the maximum IPM weight (32.49%), especially in the low-lalitude to midlatitude areas. Numéro de notice : A2021-111 Affiliation des auteurs : non IGN Thématique : FORET/IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.12.014 date de publication en ligne : 03/06/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.12.014 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96913
in IEEE Transactions on geoscience and remote sensing > vol 59 n° 2 (February 2021) . - pp 962 - 978[article]Probabilistic positioning in mobile phone network and its consequences for the privacy of mobility data / Aleksey Ogulenko in Computers, Environment and Urban Systems, vol 85 (January 2021)
![]()
[article]
Titre : Probabilistic positioning in mobile phone network and its consequences for the privacy of mobility data Type de document : Article/Communication Auteurs : Aleksey Ogulenko, Auteur ; Itzhak Benenson, Auteur ; Itzhak Omer, Auteur Année de publication : 2021 Article en page(s) : n° 101550 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Analyse spatiale
[Termes descripteurs IGN] antenne
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] confidentialité
[Termes descripteurs IGN] diagramme de Voronoï
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] géolocalisation
[Termes descripteurs IGN] inférence
[Termes descripteurs IGN] protection de la vie privée
[Termes descripteurs IGN] réseau téléphonique
[Termes descripteurs IGN] téléphonie mobile
[Termes descripteurs IGN] tessellationRésumé : (auteur) The traditional approach to mobile phone positioning is based on the assumption that the geographical location of a cell tower recorded in a Call Details Record (CDR) is a proxy for a device's location. A Voronoi tessellation is then constructed based on the entire network of cell towers and this tessellation is considered as a coordinate system, with the device located in a Voronoi polygon of a cell tower that is recorded in the CDR. If Voronoi-based positioning is correct, the uniqueness of the device trajectory is very high, and the device can be identified based on 3–5 of its recorded locations. We investigate a probabilistic approach to device positioning that is based on knowledge of each antennas' parameters and number of connections, as dependent on the distance to the antenna. The critical difference between the Voronoi-based and the real world layout is in the essential overlap of the antennas' service areas: The device that is located in a cell tower's polygon can be served by a more distant antenna that is chosen by the network system to balance the network load. Combining data on the distance distribution of the number of connections available for each antenna in the network, we resolve the overlap problem by applying Bayesian inference and construct a realistic distribution of the device location. Probabilistic device positioning demands a full revision of mobile phone privacy and new full set of tools for data analysis. Numéro de notice : A2021-005 Affiliation des auteurs : non IGN Thématique : GEOMATIQUE/MATHEMATIQUE Nature : Article DOI : 10.1016/j.compenvurbsys.2020.101550 date de publication en ligne : 14/10/2020 En ligne : https://doi.org/10.1016/j.compenvurbsys.2020.101550 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96272
in Computers, Environment and Urban Systems > vol 85 (January 2021) . - n° 101550[article]Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model / Arne Nothdurft in Forest ecology and management, vol 478 ([15/12/2020])
![]()
[article]
Titre : Climate sensitive single tree growth modeling using a hierarchical Bayes approach and integrated nested Laplace approximations (INLA) for a distributed lag model Type de document : Article/Communication Auteurs : Arne Nothdurft, Auteur Année de publication : 2020 Article en page(s) : 14 p. Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Termes descripteurs IGN] approche hiérarchique
[Termes descripteurs IGN] Autriche
[Termes descripteurs IGN] bioclimatologie
[Termes descripteurs IGN] croissance végétale
[Termes descripteurs IGN] dendrochronologie
[Termes descripteurs IGN] données météorologiques
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] Fagus sylvatica
[Termes descripteurs IGN] intégrale de Laplace
[Termes descripteurs IGN] Larix decidua
[Termes descripteurs IGN] modèle de croissance
[Termes descripteurs IGN] modèle de régression
[Termes descripteurs IGN] peuplement mélangé
[Termes descripteurs IGN] Picea abies
[Termes descripteurs IGN] Pinus sylvestris
[Termes descripteurs IGN] quercus sessiliflora
[Termes descripteurs IGN] série temporelle
[Vedettes matières IGN] Végétation et changement climatiqueRésumé : (auteur) A novel methodological framework is presented for climate-sensitive modeling of annual radial stem increments using tree-ring width time series. The approach is based on a hierarchical Bayes model together with a distributed time lag model that take into account the effects of a series of monthly temperature and precipitation values, as well as their interactions. By using a set of random walk priors, the hierarchical Bayes model allows both the detrending of the individual time series and the regression modeling to be performed simultaneously in a single model step. The approach was applied to comprehensive tree-ring width data from Austria collected on sample plots arranged in triplets representing different mixture types. Bayesian predictions revealed that European larch (Larix decidua Mill.), Norway spruce (Picea abies (L.) H. Karst.), and Scots pine (Pinus sylvestris L.) show positive climate-related growth trends throughout higher elevation sites in Tyrol, and these trends remain unchanged under a mixed-stand scenario. At the lower Austrian sites, Norway spruce was found to show a severely negative growth trend under both the pure- and mixed-stand scenario. The increment rates of European beech (Fagus sylvatica L.) were found to have a negative climate-related trend in pure stands, and the trend diminished through an admixture of spruce or larch. The trends of European larch and sessile oak (Quercus petraea (Matt.) Liebl.) showed stationary behavior, irrespective of the mixture scenario. Scots pine data showed a positive trend at the lower elevation sites under both the pure- and mixed-stand scenario. These findings indicate that species mixing does not lower the climate-related increment fluctuations of beech, oak, pine, and spruce at lower elevation sites. Numéro de notice : A2020-625 Affiliation des auteurs : non IGN Thématique : FORET Nature : Article DOI : 10.1016/j.foreco.2020.118497 date de publication en ligne : 07/09/2020 En ligne : https://doi.org/10.1016/j.foreco.2020.118497 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96025
in Forest ecology and management > vol 478 [15/12/2020] . - 14 p.[article]Bayesian-deep-learning estimation of earthquake location from single-station observations / S. Mostafa Mousavi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
![]()
[article]
Titre : Bayesian-deep-learning estimation of earthquake location from single-station observations Type de document : Article/Communication Auteurs : S. Mostafa Mousavi, Auteur ; Gregory C. Beroza, Auteur Année de publication : 2020 Article en page(s) : pp 8211 - 8224 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement du signal
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification bayesienne
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection du signal
[Termes descripteurs IGN] épicentre
[Termes descripteurs IGN] estimation bayesienne
[Termes descripteurs IGN] onde sismique
[Termes descripteurs IGN] régression
[Termes descripteurs IGN] séisme
[Termes descripteurs IGN] station d'observation
[Termes descripteurs IGN] surveillance géologique
[Termes descripteurs IGN] temps de propagationRésumé : (auteur) We present a deep-learning method for a single-station earthquake location, which we approach as a regression problem using two separate Bayesian neural networks. We use a multitask temporal convolutional neural network to learn epicentral distance and P travel time from 1-min seismograms. The network estimates epicentral distance and P travel time with mean errors of 0.23 km and 0.03 s and standard deviations of 5.42 km and 0.66 s, respectively, along with their epistemic and aleatory uncertainties. We design a separate multi-input network using standard convolutional layers to estimate the back-azimuth angle and its epistemic uncertainty. This network estimates the direction from which seismic waves arrive at the station with a mean error of 1°. Using this information, we estimate the epicenter, origin time, and depth along with their confidence intervals. We use a global data set of earthquake signals recorded within 1° (~112 km) from the event to build the model and demonstrate its performance. Our model can predict epicenter, origin time, and depth with mean errors of 7.3 km, 0.4 s, and 6.7 km, respectively, at different locations around the world. Our approach can be used for fast earthquake source characterization with a limited number of observations and also for estimating the location of earthquakes that are sparsely recorded—either because they are small or because stations are widely separated. Numéro de notice : A2020-684 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988770 date de publication en ligne : 06/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988770 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96209
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 11 (November 2020) . - pp 8211 - 8224[article]A fractal projection and Markovian segmentation-based approach for multimodal change detection / Max Mignotte in IEEE Transactions on geoscience and remote sensing, vol 58 n° 11 (November 2020)
PermalinkMultiview automatic target recognition for infrared imagery using collaborative sparse priors / Xuelu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 10 (October 2020)
PermalinkUse of Bayesian modeling to determine the effects of meteorological conditions, prescribed burn season, and tree characteristics on litterfall of pinus nigra and pinus pinaster stands / Juncal Espinosa in Forests, vol 11 n° 9 (September 2020)
PermalinkSpatiotemporally Varying Coefficients (STVC) model: a Bayesian local regression to detect spatial and temporal nonstationarity in variables relationships / Chao Song in Annals of GIS, vol 26 n° 3 (July 2020)
PermalinkCamera orientation, calibration and inverse perspective with uncertainties: a Bayesian method applied to area estimation from diverse photographs / Grégoire Guillet in ISPRS Journal of photogrammetry and remote sensing, vol 159 (January 2020)
PermalinkSentinel-2 sharpening using a reduced-rank method / Magnus Orn Ulfarsson in IEEE Transactions on geoscience and remote sensing, vol 57 n° 9 (September 2019)
PermalinkGenetic diversity and structure of Silver fir (Abies alba Mill.) at the south-eastern limit of its distribution range / Maria Teodosiu in Annals of forest research, vol 62 n° 2 (June - December 2019)
PermalinkBayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory / Francesco Minunno in Forest ecology and management, vol 440 (15 May 2019)
PermalinkPermalinkExploitation de séries temporelles d'images multi-sources pour la cartographie des surfaces en eau / Filsa Bioresita (2019)
Permalink