Descripteur



Etendre la recherche sur niveau(x) vers le bas
Building extraction from Lidar data using statistical methods / Haval Abdul-Jabbar Sadeq in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 1 (January 2021)
![]()
[article]
Titre : Building extraction from Lidar data using statistical methods Type de document : Article/Communication Auteurs : Haval Abdul-Jabbar Sadeq, Auteur Année de publication : 2021 Article en page(s) : pp 33 - 42 Note générale : Bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Lasergrammétrie
[Termes descripteurs IGN] analyse de données
[Termes descripteurs IGN] classification orientée objet
[Termes descripteurs IGN] détection du bâti
[Termes descripteurs IGN] données lidar
[Termes descripteurs IGN] données localisées 3D
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] extraction de traits caractéristiques
[Termes descripteurs IGN] Ransac (algorithme)
[Termes descripteurs IGN] semis de pointsRésumé : (Auteur) In this article, a straightforward, intuitive method for lidar data classification and building extraction, based on statistical analysis, is presented. The classification of the point cloud into ground and nonground is begun by individually testing each point within the point cloud using the statistical mean height. In this operation, various window sizes are specified, and the mean is obtained at each size. The points that are above the mean are saved and divided by the number of windows to obtain the proportion. Points are considered non-ground if their proportion is higher than the assigned threshold, and otherwise ground. An algorithm for classifying the obtained nonground point cloud into buildings and trees is also illustrated in this article. First the nonground points are labeled, then each label is tested individually. The process begins with segmenting each label. Then comes testing of whether each segment of points can be fitted within a specific plane. The label of the point cloud is considered a building if the number of segments considered as planes is larger than those considered as nonplanes; otherwise it is classified as a tree. Numéro de notice : A2021-055 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern date de publication en ligne : 01/01/2021 En ligne : https://doi.org/10.14358/PERS.87.1.33 Format de la ressource électronique : URL Article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96760
in Photogrammetric Engineering & Remote Sensing, PERS > vol 87 n° 1 (January 2021) . - pp 33 - 42[article]Semi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree / Shuang Wang in IEEE Transactions on geoscience and remote sensing, Vol 58 n° 12 (December 2020)
![]()
[article]
Titre : Semi-supervised PolSAR image classification based on improved tri-training with a minimum spanning tree Type de document : Article/Communication Auteurs : Shuang Wang, Auteur ; Yanhe Guo, Auteur ; Wenqiang Hua, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 8583 - 8597 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image radar et applications
[Termes descripteurs IGN] arbre aléatoire minimum
[Termes descripteurs IGN] classification semi-dirigée
[Termes descripteurs IGN] échantillon
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image radar moirée
[Termes descripteurs IGN] polarimétrie radar
[Termes descripteurs IGN] voisinage (topologie)Résumé : (auteur) n this article, the terrain classifications of polarimetric synthetic aperture radar (PolSAR) images are studied. A novel semi-supervised method based on improved Tri-training combined with a neighborhood minimum spanning tree (NMST) is proposed. Several strategies are included in the method: 1) a high-dimensional vector of polarimetric features that are obtained from the coherency matrix and diverse target decompositions is constructed; 2) this vector is divided into three subvectors and each subvector consists of one-third of the polarimetric features, randomly selected. The three subvectors are used to separately train the three different base classifiers in the Tri-training algorithm to increase the diversity of classification; and 3) a help-training sample selection with the improved NMST that uses both the coherency matrix and the spatial information is adopted to select highly reliable unlabeled samples to increase the training sets. Thus, the proposed method can effectively take advantage of unlabeled samples to improve the classification. Experimental results show that with a small number of labeled samples, the proposed method achieves a much better performance than existing classification methods. Numéro de notice : A2020-743 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2988982 date de publication en ligne : 14/05/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2988982 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=96374
in IEEE Transactions on geoscience and remote sensing > Vol 58 n° 12 (December 2020) . - pp 8583 - 8597[article]Vehicle detection of multi-source remote sensing data using active fine-tuning network / Xin Wu in ISPRS Journal of photogrammetry and remote sensing, vol 167 (September 2020)
![]()
[article]
Titre : Vehicle detection of multi-source remote sensing data using active fine-tuning network Type de document : Article/Communication Auteurs : Xin Wu, Auteur ; Wei Li, Auteur ; Danfeng Hong, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 39 - 53 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image
[Termes descripteurs IGN] Allemagne
[Termes descripteurs IGN] apprentissage profond
[Termes descripteurs IGN] classification par réseau neuronal convolutif
[Termes descripteurs IGN] détection d'objet
[Termes descripteurs IGN] données multisources
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image aérienne
[Termes descripteurs IGN] modèle numérique de surface
[Termes descripteurs IGN] modèle stéréoscopique
[Termes descripteurs IGN] segmentation
[Termes descripteurs IGN] segmentation sémantique
[Termes descripteurs IGN] véhiculeRésumé : (auteur) Vehicle detection in remote sensing images has attracted increasing interest in recent years. However, its detection ability is limited due to lack of well-annotated samples, especially in densely crowded scenes. Furthermore, since a list of remotely sensed data sources is available, efficient exploitation of useful information from multi-source data for better vehicle detection is challenging. To solve the above issues, a multi-source active fine-tuning vehicle detection (Ms-AFt) framework is proposed, which integrates transfer learning, segmentation, and active classification into a unified framework for auto-labeling and detection. The proposed Ms-AFt employs a fine-tuning network to firstly generate a vehicle training set from an unlabeled dataset. To cope with the diversity of vehicle categories, a multi-source based segmentation branch is then designed to construct additional candidate object sets. The separation of high quality vehicles is realized by a designed attentive classifications network. Finally, all three branches are combined to achieve vehicle detection. Extensive experimental results conducted on two open ISPRS benchmark datasets, namely the Vaihingen village and Potsdam city datasets, demonstrate the superiority and effectiveness of the proposed Ms-AFt for vehicle detection. In addition, the generalization ability of Ms-AFt in dense remote sensing scenes is further verified on stereo aerial imagery of a large camping site. Numéro de notice : A2020-546 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1016/j.isprsjprs.2020.06.016 date de publication en ligne : 13/07/2020 En ligne : https://doi.org/10.1016/j.isprsjprs.2020.06.016 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95772
in ISPRS Journal of photogrammetry and remote sensing > vol 167 (September 2020) . - pp 39 - 53[article]Réservation
Réserver ce documentExemplaires (3)
Code-barres Cote Support Localisation Section Disponibilité 081-2020091 SL Revue Centre de documentation Revues en salle Disponible 081-2020093 DEP-RECP Revue MATIS Dépôt en unité Exclu du prêt 081-2020092 DEP-RECF Revue Nancy Dépôt en unité Exclu du prêt Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification / Yu Li in IEEE Transactions on geoscience and remote sensing, vol 58 n° 7 (July 2020)
![]()
[article]
Titre : Subpixel-pixel-superpixel-based multiview active learning for hyperspectral images classification Type de document : Article/Communication Auteurs : Yu Li, Auteur ; Ting Lu, Auteur ; Shutao Li, Auteur Année de publication : 2020 Article en page(s) : pp 4976 - 4988 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] algorithme d'apprentissage
[Termes descripteurs IGN] analyse infrapixellaire
[Termes descripteurs IGN] classification pixellaire
[Termes descripteurs IGN] échantillonnage
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] image multiple
[Termes descripteurs IGN] superpixelRésumé : (auteur) Active learning (AL) attempts to actively select the most representative or useful training samples in an iterative manner. The aim is to simultaneously improve the classification performance and reduce the manual labeling effort. In this article, a novel subpixel-pixel-superpixel-based multiview AL (MAL) (SPS-MAL) method is proposed for hyperspectral image (HSI) classification. Here, the multiple views are generated via extracting the subpixel-level, pixel-level, and superpixel-level information. The multiple views can reflect various characteristics of HSI, i.e., spectral mixture, spectral discrimination, and spectral–spatial structure. Therefore, the joint use of diverse and complementary information in multiple views will contribute to a better identification ability of different classes. In addition, a coarse-to-fine MAL algorithm is introduced to effectively select the most representative samples with the most uncertainty. Specifically, a disagreement analysis on multiple views and joint posterior probability estimation is used to query unlabeled samples. Along with the expansion of training samples, view-specific confidence scores are estimated to adaptively integrate the classification results of multiple views, according to their discrimination performance. In this way, the classification accuracy will be further boosted while the number of necessary training samples can be significantly reduced. The experimental classification results on three well-known HSIs demonstrate the effectiveness of the proposed SPS-MAL method. Numéro de notice : A2020-392 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2020.2971081 date de publication en ligne : 14/02/2020 En ligne : https://doi.org/10.1109/TGRS.2020.2971081 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95388
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 7 (July 2020) . - pp 4976 - 4988[article]Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance / Bing Tu in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)
![]()
[article]
Titre : Hyperspectral classification with noisy label detection via superpixel-to-pixel weighting distance Type de document : Article/Communication Auteurs : Bing Tu, Auteur ; Chengle Zhou, Auteur ; Danbing He, Auteur ; et al., Auteur Année de publication : 2020 Article en page(s) : pp 4116 - 4131 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes descripteurs IGN] analyse de groupement
[Termes descripteurs IGN] classification barycentrique
[Termes descripteurs IGN] classification dirigée
[Termes descripteurs IGN] classification par séparateurs à vaste marge
[Termes descripteurs IGN] erreur d'échantillon
[Termes descripteurs IGN] étiquette
[Termes descripteurs IGN] image hyperspectrale
[Termes descripteurs IGN] pondération
[Termes descripteurs IGN] précision de la classification
[Termes descripteurs IGN] superpixelRésumé : (auteur) Classification is an important technique for remotely sensed hyperspectral image (HSI) exploitation. Often, the presence of wrong (noisy) labels presents a drawback for accurate supervised classification. In this article, we introduce a new framework for noisy label detection that combines a superpixel-to-pixel weighting distance (SPWD) and density peak clustering. The proposed method is able to accurately detect and remove noisy labels in the training set before HSI classification. It considers two weak assumptions when exploiting the spectral–spatial information contained in the HSI: 1) all the pixels in a superpixel belong to the same class and 2) close pixels in spectral space have the same label. The proposed method consists of the following steps. First, a superpixel segmentation step is used to obtain self-adaptive spatial information for each training sample. Then, a metric is utilized to measure the spectral distance information between each superpixel and pixel. Meanwhile, in order to overcome the first weak assumption, we use K nearest neighbors to obtain the closest neighborhoods of pixels around each superpixel, and a Gaussian weight is employed to mitigate the second weak assumption by adapting the original distance information. Next, the noisy labels in the original training set are removed by a density threshold-based decision function. Finally, the support vector machine (SVM) classifier is employed to evaluate the effectiveness of the proposed SPWD detection method in terms of classification accuracy. Experiments performed on several real HSI data sets demonstrate that the method can effectively improve the performance of classifiers trained with noisy training sets in terms of classification accuracy. Numéro de notice : A2020-283 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1109/TGRS.2019.2961141 date de publication en ligne : 13/01/2020 En ligne : https://doi.org/10.1109/TGRS.2019.2961141 Format de la ressource électronique : url article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=95105
in IEEE Transactions on geoscience and remote sensing > vol 58 n° 6 (June 2020) . - pp 4116 - 4131[article]What, where, and how to transfer in SAR target recognition based on deep CNNs / Zhongling Huang in IEEE Transactions on geoscience and remote sensing, vol 58 n° 4 (April 2020)
PermalinkTree annotations in LiDAR data using point densities and convolutional neural networks / Ananya Gupta in IEEE Transactions on geoscience and remote sensing, vol 58 n° 2 (February 2020)
PermalinkVery high resolution land cover mapping of urban areas at global scale with convolutional neural network / Thomas Tilak (2020)
PermalinkLand cover mapping at very high resolution with rotation equivariant CNNs : Towards small yet accurate models / Diego Marcos in ISPRS Journal of photogrammetry and remote sensing, vol 145 - part A (November 2018)
PermalinkLabel propagation with ensemble of pairwise geometric relations : towards robust large-scale retrieval of object instances / Xiaomeng Wu in International journal of computer vision, vol 126 n° 7 (July 2018)
PermalinkLarge-scale supervised learning for 3D Point cloud labeling : Semantic3d.Net / Timo Hackel in Photogrammetric Engineering & Remote Sensing, PERS, vol 84 n° 5 (mai 2018)
PermalinkOpen land cover from OpenStreetMap and remote sensing / Michael Schultz in International journal of applied Earth observation and geoinformation, vol 63 (December 2017)
PermalinkA novel semisupervised active-learning algorithm for hyperspectral image classification / Zengmao Wang in IEEE Transactions on geoscience and remote sensing, vol 55 n° 6 (June 2017)
PermalinkMixed map labeling / Maarten Löffler in Journal of Spatial Information Science (JoSIS), n° 13 (September 2016)
PermalinkLabel embedding : a frugal baseline for text recognition / Jose A. Rodriguez-Serrano in International journal of computer vision, vol 113 n° 3 (July 2015)
Permalink