Descripteur
Documents disponibles dans cette catégorie (300)
Ajouter le résultat dans votre panier
Visionner les documents numériques
Affiner la recherche Interroger des sources externes
Etendre la recherche sur niveau(x) vers le bas
Forest road extraction from orthophoto images by convolutional neural networks / Erhan Çalişkan in Geocarto international, vol 38 n° inconnu ([01/01/2023])
[article]
Titre : Forest road extraction from orthophoto images by convolutional neural networks Type de document : Article/Communication Auteurs : Erhan Çalişkan, Auteur ; Yusuf Sevim, Auteur Année de publication : 2023 Article en page(s) : pp Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] chemin forestier
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] extraction automatique
[Termes IGN] orthoimage
[Termes IGN] segmentation sémantiqueRésumé : (auteur) Continuous monitoring of the forest road infrastructure and keeping track of the changes occurred are important for forestry practices, map updating, forest fire and forest transport decision support systems. In this context, the most of up to date data can be obtained by automatic forest road extraction from satellite images via machine learning (ML). Acquiring sufficient data is one of the most important factors which affect the success of ML and deep learning (DL). DL architectures yield more consistent results for complex data sets compared with ML algorithms. In the present study, three different deep learning (Resnet-18, MobileNet-V2 and Xception) architectures with semantic segmentation architecture were compared for extracting the forest road network from high-resolution orthophoto images and the results were analyzed. The architectures were evaluated through a multiclass statistical analysis based precision, recall, F1 score, intersection over union and overall accuracy (OA). The results present significant values obtained by the Resnet-18 architecture, with 99.72% of OA and 98.87% of precision and by the MobileNet-V2 architecture, with 97.76% of OA and 98.28% of precision. Also the results show that Resnet-18, MobileNet-V2 semantic segmentation architectures can be used efficiently for forest road extraction. Numéro de notice : A2022-159 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article DOI : 10.1080/10106049.2022.2060319 Date de publication en ligne : 06/04/2022 En ligne : https://doi.org/10.1080/10106049.2022.2060319 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100380
in Geocarto international > vol 38 n° inconnu [01/01/2023] . - pp[article]Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) / Yizi Chen (2023)
Titre : Modern vectorization and alignment of historical maps: An application to Paris Atlas (1789-1950) Titre original : Vectorisation et alignement modernes des cartes historiques : Une application à l'Atlas de Paris (1789-1950) Type de document : Thèse/HDR Auteurs : Yizi Chen , Auteur ; Julien Perret , Directeur de thèse ; Joseph Chazalon, Directeur de thèse ; Clément Mallet , Directeur de thèse Editeur : Champs-sur-Marne [France] : Université Gustave Eiffel Année de publication : 2023 Importance : 124 p. Format : 21 x 30 cm Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] alignement des données
[Termes IGN] apprentissage profond
[Termes IGN] carte ancienne
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] contraste local
[Termes IGN] extraction automatique
[Termes IGN] jeu de données localisées
[Termes IGN] morphologie mathématique
[Termes IGN] Paris (75)
[Termes IGN] plan de ville
[Termes IGN] reconnaissance de formes
[Termes IGN] vectorisation
[Termes IGN] vision par ordinateurIndex. décimale : THESE Thèses et HDR Résumé : (auteur) Les cartes sont une source unique de connaissances depuis des siècles. Ces documents historiques fournissent des informations inestimables pour analyser des transformations spatiales complexes sur des périodes importantes. Cela est particulièrement vrai pour les zones urbaines qui englobent de multiples domaines de recherche imbriqués : humanités, sciences sociales, etc. La complexité des cartes (texte, bruit, artefacts de numérisation, etc.) a entravé la capacité à proposer des approches de vectorisation polyvalentes et efficaces pendant des décennies. Dans cette thèse, nous proposons une solution apprenable, reproductible et réutilisable pour la transformation automatique de cartes raster en objets vectoriels (îlots, rues, rivières), en nous focalisant sur le problème d'extraction de formes closes. Notre approche s'appuie sur la complémentarité des réseaux de neurones convolutifs qui excellent dans et de la morphologie mathématique, qui présente de solides garanties au regard de l'extraction de formes closes tout en étant très sensible au bruit. Afin d'améliorer la robustesse au bruit des filtres convolutifs, nous comparons plusieurs fonctions de coût visant spécifiquement à préserver les propriétés topologiques des résultats, et en proposons de nouvelles. À cette fin, nous introduisons également un nouveau type de couche convolutive (CConv) exploitant le contraste des images, pour explorer les possibilités de telles améliorations à l'aide de transformations architecturales des réseaux. Finalement, nous comparons les différentes approches et architectures qui peuvent être utilisées pour implémenter chaque étape de notre chaîne de traitements, et comment combiner ces dernières de la meilleure façon possible. Grâce à une chaîne de traitement fonctionnelle, nous proposons une nouvelle procédure d'alignement d'images de plans historiques, et commençons à tirer profit de la redondance des données extraites dans des images similaires pour propager des annotations, améliorer la qualité de la vectorisation, et éventuellement détecter des cas d'évolution en vue d'analyse thématique, ou encore l'estimation automatique de la qualité de la vectorisation. Afin d'évaluer la performance des méthodes mentionnées précédemment, nous avons publié un nouveau jeu de données composé d'images de plans historiques annotées. C'est le premier jeu de données en libre accès dédié à la vectorisation de plans historiques. Nous espérons qu'au travers de nos publications, et de la diffusion ouverte et publique de nos résultats, sources et jeux de données, cette recherche pourra être utile à un large éventail d'applications liées aux cartes historiques. Note de contenu : 1- Introduction
2- Pipeline design for historical map vectorization
3- Learning edges through deep neural architectures
4- Topology-aware loss functions
5- Improving model robustness of deep edge detectors
6- Leveraging redundancies of historical maps
7- Conclusion and perspectivesNuméro de notice : 10713 Affiliation des auteurs : UGE-LASTIG (2020- ) Thématique : IMAGERIE/INFORMATIQUE Nature : Thèse française Note de thèse : thèse de doctorat : Sciences géographiques : UGE : 2023 Organisme de stage : LASTIG (IGN) nature-HAL : Thèse DOI : sans En ligne : https://theses.hal.science/tel-04106107 Format de la ressource électronique : URL Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=103264 GA-Net: A geometry prior assisted neural network for road extraction / Xin Chen in International journal of applied Earth observation and geoinformation, vol 114 (November 2022)
[article]
Titre : GA-Net: A geometry prior assisted neural network for road extraction Type de document : Article/Communication Auteurs : Xin Chen, Auteur ; Qun Sun, Auteur ; Wenyue Guo, Auteur ; et al., Auteur Année de publication : 2022 Article en page(s) : n° 103004 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] attention (apprentissage automatique)
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] détection de contours
[Termes IGN] données multiéchelles
[Termes IGN] extraction automatique
[Termes IGN] extraction de traits caractéristiques
[Termes IGN] extraction du réseau routier
[Termes IGN] jeu de données
[Termes IGN] Massachusetts (Etats-Unis)Résumé : (auteur) With geospatial intelligence research developing rapidly, automatic road extraction is becoming a fundamental and challenging task. Due to the special geometric structure and spectral information of road networks, existing methods suffer from incomplete and fractured results. In this work, a novel road extraction convolutional neural network, incorporating the road boundary details and road junction information via a dual-branch multi-task structure, is proposed to learn synergistic feature representations and strengthen road connectivity. Firstly, a BiFPN-based feature aggregation module is utilised to bridge the semantic gap between low-level and high-level feature maps, allowing multi-scale spatial details to be fully fused. Secondly, the boundary auxiliary branch, using a U-shaped network with a spatial-channel attention module, captures residential information for the backbone to enhance the subtleties of road edges. Thirdly, the node inferring branch models the road junction position jointly with the road surface, aiming to strengthen the topology structure and reduce the fragmented road segments. We perform experiments on three diverse road datasets, namely the DeepGlobe dataset, Massachusetts dataset, and SpaceNet dataset. The results demonstrate that our model shows an overall performance improvement over some SOTA algorithms and the IoU indicator achieves 3.86%, 0.79%, and 1.71% improvements over Unet on the three datasets, respectively. Numéro de notice : A2022-785 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article DOI : 10.1016/j.jag.2022.103004 En ligne : https://doi.org/10.1016/j.jag.2022.103004 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=101888
in International journal of applied Earth observation and geoinformation > vol 114 (November 2022) . - n° 103004[article]Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images / Jun Chen in Photogrammetric Engineering & Remote Sensing, PERS, vol 88 n° 4 (April 2022)
[article]
Titre : Research on machine intelligent perception of urban geographic location based on high resolution remote sensing images Type de document : Article/Communication Auteurs : Jun Chen, Auteur ; Cunjian Yang, Auteur ; Zengyang Yu, Auteur Année de publication : 2022 Article en page(s) : pp 223 - 231 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] base de données
[Termes IGN] Chine
[Termes IGN] classification par réseau neuronal convolutif
[Termes IGN] cognition
[Termes IGN] détection d'objet
[Termes IGN] extraction automatique
[Termes IGN] géolocalisation
[Termes IGN] image à haute résolution
[Termes IGN] intelligence artificielle
[Termes IGN] reconnaissance automatique
[Termes IGN] zone urbaineRésumé : (auteur) Machine intelligent perception (MIP) provides a novel way for human beings to recognize geographical locations automatically. MIP of geographical locations enables computers to describe locations automatically and quantitatively by extracting Earth's surface features and building relationships. The earth surface fingerprint is established here by mining the relationship between spatial objects with stable characteristics extracted from urban high-resolution remote sensing images, which realizes intelligent perception of geographical location innovatively. Mask Region-based Convolutional Neural Network is used to automatically extract the spatial objects such as playgrounds, crossroads, and bridges from the images. Then, the extracted spatial objects are encoded according to the landuse type, distance, and angle of 24 nearest objects to construct urban surface fingerprint database. The urban surface fingerprint database is used to match the geographical location of spatial objects in local images so that the matching algorithm can be used for machine recognition of the geographical location of specific objects in the target image. Taking the main cities in China as the experimental area, the success rate of location perception is 92%. We have made a useful exploration in the field of MIP of geographical location, hoping to promote the development of human cognition of geographical location. Numéro de notice : A2022-285 Affiliation des auteurs : non IGN Thématique : IMAGERIE/INFORMATIQUE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.14358/PERS.21-00017R3 Date de publication en ligne : 04/04/2022 En ligne : https://doi.org/10.14358/PERS.21-00017R3 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100319
in Photogrammetric Engineering & Remote Sensing, PERS > vol 88 n° 4 (April 2022) . - pp 223 - 231[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 105-2022041 SL Revue Centre de documentation Revues en salle Disponible Automatic extraction of building geometries based on centroid clustering and contour analysis on oblique images taken by unmanned aerial vehicles / Leilei Zhang in International journal of geographical information science IJGIS, vol 36 n° 3 (March 2022)
[article]
Titre : Automatic extraction of building geometries based on centroid clustering and contour analysis on oblique images taken by unmanned aerial vehicles Type de document : Article/Communication Auteurs : Leilei Zhang, Auteur ; Guoxin Wang, Auteur ; Weijian Sun, Auteur Année de publication : 2022 Article en page(s) : pp 453 - 475 Note générale : bibliographie Langues : Anglais (eng) Descripteur : [Vedettes matières IGN] Traitement d'image optique
[Termes IGN] analyse de groupement
[Termes IGN] classification barycentrique
[Termes IGN] classification non dirigée
[Termes IGN] détection de contours
[Termes IGN] détection du bâti
[Termes IGN] extraction automatique
[Termes IGN] image captée par drone
[Termes IGN] image oblique
[Termes IGN] modèle numérique de surface
[Termes IGN] orthophotocarte
[Termes IGN] précision géométrique (imagerie)Résumé : (auteur) This paper introduces a method based on centroid clustering and contour analysis to extract area and height measurements on buildings from the 3D model generated by oblique images. The method comprises three steps: (1) extract the contour plane from the fused data of the digital surface model (DSM) and digital orthophoto map (DOM); (2) identify building contour clusters based on the number of centroids contained in each category determined by mean-shift centroid clustering; (3) remove the mis-identified contours in a given building contour cluster by a contour analysis and obtain the geometric information of the building using map algebra. The proposed approach was tested against four datasets. Compared with other results, the detection has effective completeness, correctness, quality, and higher geometric accuracy. The maximum average relative error of building height and area extraction is less than 8%. The method is fast for a large-scale collection of building attributes and improves the applicability of oblique photography in GIS. Numéro de notice : A2022-205 Affiliation des auteurs : non IGN Thématique : IMAGERIE Nature : Article nature-HAL : ArtAvecCL-RevueIntern DOI : 10.1080/13658816.2021.1937632 Date de publication en ligne : 14/06/2021 En ligne : https://doi.org/10.1080/13658816.2021.1937632 Format de la ressource électronique : URL article Permalink : https://documentation.ensg.eu/index.php?lvl=notice_display&id=100020
in International journal of geographical information science IJGIS > vol 36 n° 3 (March 2022) . - pp 453 - 475[article]Exemplaires(1)
Code-barres Cote Support Localisation Section Disponibilité 079-2022031 SL Revue Centre de documentation Revues en salle Disponible Automatic extraction of damaged houses by earthquake based on improved YOLOv5: A case study in Yangbi / Yafei Jing in Remote sensing, vol 14 n° 2 (January-2 2022)PermalinkAutomated construction of a French Entity Linking dataset to geolocate social network posts in the context of natural disasters / Gaëtan Caillaut (2022)PermalinkPoint clouds for use in Building Information Models (BIM) / Robert Klinc in Geodetski vestnik, vol 65 n° 4 (December 2021 - February 2022)PermalinkA deep multi-modal learning method and a new RGB-depth data set for building roof extraction / Mehdi Khoshboresh Masouleh in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 10 (October 2021)PermalinkExtraction of impervious surface using Sentinel-1A time-series coherence images with the aid of a Sentinel-2A image / Wenfu Wu in Photogrammetric Engineering & Remote Sensing, PERS, vol 87 n° 3 (March 2021)PermalinkPermalinkA hybrid deep learning–based model for automatic car extraction from high-resolution airborne imagery / Mehdi Khoshboresh Masouleh in Applied geomatics, vol 12 n° 2 (June 2020)PermalinkObject-based automatic multi-index built-up areas extraction method for WorldView-2 satellite imagery / Zhenhui Sun in Geocarto international, Vol 35 n° 8 ([01/06/2020])PermalinkPolarimetric SAR calibration and residual error estimation when corner reflectors are unavailable / Lei Shi in IEEE Transactions on geoscience and remote sensing, vol 58 n° 6 (June 2020)PermalinkIntegration of remote sensing and GIS to extract plantation rows from a drone-based image point cloud digital surface model / Nadeem Fareed in ISPRS International journal of geo-information, vol 9 n° 3 (March 2020)Permalink